Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 172: 108214, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508057

ABSTRACT

Calcific aortic valve disease (CAVD) is a heart valve disorder characterized primarily by calcification of the aortic valve, resulting in stiffness and dysfunction of the valve. CAVD is prevalent among aging populations and is linked to factors such as hypertension, dyslipidemia, tobacco use, and genetic predisposition, and can result in becoming a growing economic and health burden. Once aortic valve calcification occurs, it will inevitably progress to aortic stenosis. At present, there are no medications available that have demonstrated effectiveness in managing or delaying the progression of the disease. In this study, we mined four publicly available microarray datasets (GSE12644 GSE51472, GSE77287, GSE233819) associated with CAVD from the GEO database with the aim of identifying hub genes associated with the occurrence of CAVD and searching for possible biological targets for the early prevention and diagnosis of CAVD. This study provides preliminary evidence for therapeutic and preventive targets for CAVD and may provide a solid foundation for subsequent biological studies.


Subject(s)
Aortic Valve Stenosis , Aortic Valve/pathology , Calcinosis , Heart Valve Diseases , Humans , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/diagnosis , Aortic Valve Stenosis/epidemiology , Heart Valve Diseases/genetics , Calcinosis/genetics
2.
Exp Gerontol ; 155: 111578, 2021 11.
Article in English | MEDLINE | ID: mdl-34601076

ABSTRACT

Perioperative neurocognitive disorder (PND) is recently recommended to define the cognitive decrease during the perioperative period. However, the disease's underlying mechanisms remain unclear. MicroRNAs (miRNAs) are noncoding RNAs that play a vital role in regulating neuroregeneration and neuronal apoptosis. In this study, miR-124-3p was significantly reduced in the PND rat model after a cardiopulmonary bypass (CPB) procedure. MicroRNA-124 (miR-124)-3p-overexpressed lentivirus was constructed and injected via the intracerebroventricular method before CPB. Morris Water Maze test (WMW) and the Open-Field test (OFT) were used to measure behavior changes, data shows decline of cognitive function of rats after CPB. PND rats expressed higher Aß and p-Tau Protein by using immunohistochemistry (IHC) analyses and Enzyme-Linked Immune Sorbent Assay (ELISA). Moreover, the results of IHC, ELISA, Western Blot analysis (WB) and Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling Assay (TUNEL) showed CPB procedure induced inflammation and apoptosis in rats with PND. The data also revealed the protective function of miR-124-3p overexpression against PND in relieving inflammation, cell apoptosis, and alleviating repaired cognitive function. Moreover, miR-124-3p was predicted by directly targeting LPIN1. This study gives a novel viewpoint that miR-124-3p could improve the state of PND via modulating LPIN1, therefore providing a new strategy for preventing and treating PND in a preclinical application.


Subject(s)
Cardiopulmonary Bypass , MicroRNAs , Animals , Apoptosis , Inflammation , Male , MicroRNAs/genetics , Neurocognitive Disorders , Rats
3.
J Invest Surg ; 34(12): 1297-1303, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32727232

ABSTRACT

BACKGROUND: Perioperative neurocognitive disorders (PND) resulting from cardiac surgery is a complication with high morbidity and mortality. However, the pathogenesis is unknown. METHODS: For the sake of investigating the risk factors and mechanism of PND, we collected the characteristics and neurological scores of patients undergoing cardiac surgery in the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University and Affiliated Hospital of Southwest Medical University from Jan 1, 2016 to Dec 11, 2018. RESULTS: We found that age and left atrial thrombus are independent risk factors for PND after cardiac surgery. Furthermore, the serum of 29 patients was collected on the 7th day after cardiac surgery for detecting the expression of lncRNA-MYL2-2 and miR-124-3p. Increased lncRNA-MYL2-2 and decreased miR-124-3p in serum were associated with the decline of patients' cognition. CONCLUSIONS: LncRNA-MYL2-2 and miRNA-124-3p may jointly participate in the occurrence and development of PND after cardiac surgery. These important findings are advantaged to further understand the pathogenesis of PND and prevent it, provide new biomarkers for the diagnosis and monitoring of PND.


Subject(s)
Cardiac Surgical Procedures , MicroRNAs , Neurocognitive Disorders , RNA, Long Noncoding , Biomarkers , Cardiac Surgical Procedures/adverse effects , Humans , MicroRNAs/genetics , Neurocognitive Disorders/diagnosis , Neurocognitive Disorders/epidemiology , Neurocognitive Disorders/etiology , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...