Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38955872

ABSTRACT

Music is a powerful medium that influences our emotions and memories. Neuroscience research has demonstrated music's ability to engage brain regions associated with emotion, reward, motivation, and autobiographical memory. While music's role in modulating emotions has been explored extensively, our study investigates whether music can alter the emotional content of memories. Building on the theory that memories can be updated upon retrieval, we tested whether introducing emotional music during memory recollection might introduce false emotional elements into the original memory trace. We developed a 3-day episodic memory task with separate encoding, recollection, and retrieval phases. Our primary hypothesis was that emotional music played during memory recollection would increase the likelihood of introducing novel emotional components into the original memory. Behavioral findings revealed two key outcomes: 1) participants exposed to music during memory recollection were more likely to incorporate novel emotional components congruent with the paired music valence, and 2) memories retrieved 1 day later exhibited a stronger emotional tone than the original memory, congruent with the valence of the music paired during the previous day's recollection. Furthermore, fMRI results revealed altered neural engagement during story recollection with music, including the amygdala, anterior hippocampus, and inferior parietal lobule. Enhanced connectivity between the amygdala and other brain regions, including the frontal and visual cortex, was observed during recollection with music, potentially contributing to more emotionally charged story reconstructions. These findings illuminate the interplay between music, emotion, and memory, offering insights into the consequences of infusing emotional music into memory recollection processes.

2.
Psychon Bull Rev ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723336

ABSTRACT

Music is a ubiquitous element of daily life. Understanding how music memory is represented and expressed in the brain is key to understanding how music can influence human daily cognitive tasks. Current music-memory literature is built on data from very heterogeneous tasks for measuring memory, and the neural correlates appear to differ depending on different forms of memory function targeted. Such heterogeneity leaves many exceptions and conflicts in the data underexplained (e.g., hippocampal involvement in music memory is debated). This review provides an overview of existing neuroimaging results from music-memory related studies and concludes that although music is a special class of event in our lives, the memory systems behind it do in fact share neural mechanisms with memories from other modalities. We suggest that dividing music memory into different levels of a hierarchy (structural level and semantic level) helps understand overlap and divergence in neural networks involved. This is grounded in the fact that memorizing a piece of music recruits brain clusters that separately support functions including-but not limited to-syntax storage and retrieval, temporal processing, prediction versus reality comparison, stimulus feature integration, personal memory associations, and emotion perception. The cross-talk between frontal-parietal music structural processing centers and the subcortical emotion and context encoding areas explains why music is not only so easily memorable but can also serve as strong contextual information for encoding and retrieving nonmusic information in our lives.

3.
bioRxiv ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37577605

ABSTRACT

Listening to music during cognitive activities, such as reading and studying, is very common in human daily life. Therefore, it is important to understand how music interacts with concurrent cognitive functions, particularly memory. Current literature has presented mixed results for whether music can benefit learning in other modalities. Evidence is needed for what neural mechanisms music can tap into to enhance concurrent memory processing. This fMRI study aimed to begin filling this gap by investigating how music of varying predictability levels influences parallel visual sequence encoding performance. Behavioral results suggest that overall, predictable music enhances visual sequential encoding, and this effect increases with the structural regularity and familiarity of music. fMRI results indicate that during visual sequence encoding, music activates traditional music-processing and motor-related areas, but decreases parahippocampal and striatal engagement. This deactivation may indicate a more efficient encoding of visual information when music is present. By comparing music conditions of different structural predictability and familiarity, we probed how this occurs. We demonstrate improved encoding with increased syntactical regularity, which was associated with decreased activity in default mode network and increased activity in inferior temporal gyrus. Furthermore, the temporal schema provided by music familiarity may influence encoding through altered functional connectivity between the prefrontal cortex, medial temporal lobe and striatum. Overall, we propose that pairing music with learning might facilitate memory by reducing neural demands for visual encoding and simultaneously strengthening the connectivity between the medial temporal lobe and frontostriatal loops important for sequencing information. Significance Statement: There is considerable interest in what mechanisms can be tapped to improve human memory. Music provides a potential modulator, but few studies have investigated music effects on encoding episodic memory. This study used a novel design to examine how music can influence concurrent visual item sequence encoding. We provided neural data to better understand mechanisms behind potential benefits of music for learning. Our results demonstrated predictable music may help guide parallel learning of sequences in another modality. We found that music might facilitate processing in neural systems associated with visual declarative long-term and working memory, and familiar music might modulate reward circuits and provide a temporal schema which facilitates better encoding of the temporal structure of new non-music information.

SELECTION OF CITATIONS
SEARCH DETAIL
...