Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 832
Filter
1.
Water Res ; 259: 121848, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38824797

ABSTRACT

Chronic exposure to elevated geogenic arsenic (As) and fluoride (F-) concentrations in groundwater poses a significant global health risk. In regions around the world where regular groundwater quality assessments are limited, the presence of harmful levels of As and F- in shallow groundwater extracted from specific wells remains uncertain. This study utilized an enhanced stacking ensemble learning model to predict the distributions of As and F- in shallow groundwater based on 4,393 available datasets of observed concentrations and forty relevant environmental factors. The enhanced model was obtained by fusing well-suited Extreme Gradient Boosting, Random Forest, and Support Vector Machine as the base learners and a structurally simple Linear Discriminant Analysis as the meta-learner. The model precisely captured the patchy distributions of groundwater As and F- with an AUC value of 0.836 and 0.853, respectively. The findings revealed that 9.0% of the study area was characterized by a high As risk in shallow groundwater, while 21.2% was at high F- risk identified as having a high risk of fluoride contamination. About 0.2% of the study area shows elevated levels of both of them. The affected populations are estimated at approximately 7.61 million, 34.1 million, and 0.2 million, respectively. Furthermore, sedimentary environment exerted the greatest influence on distribution of groundwater As, with human activities and climate following closely behind at 29.5%, 28.1%, and 21.9%, respectively. Likewise, sedimentary environment was the primary factor affecting groundwater F- distribution, followed by hydrogeology and soil physicochemical properties, contributing 27.8%, 24.0%, and 23.3%, respectively. This study contributed to the identification of health risks associated with shallow groundwater As and F-, and provided insights into evaluating health risks in regions with limited samples.

2.
Front Microbiol ; 15: 1373013, 2024.
Article in English | MEDLINE | ID: mdl-38835486

ABSTRACT

Background: This study aimed to clarify the relationship between the gut microbiota and osteoporosis combining Mendelian randomization (MR) analysis with animal experiments. Methods: We conducted an analysis on the relationship between differential bacteria and osteoporosis using open-access genome-wide association study (GWAS) data on gut microbe and osteoporosis obtained from public databases. The analysis was performed using two-sample MR analysis, and the causal relationship was examined through inverse variance weighting (IVW), MR Egger, weighted median, and weighted mode methods. Bilateral oophorectomy was employed to replicate the mouse osteoporosis model, which was assessed by micro computed tomography (CT), pathological tests, and bone transformation indexes. Additionally, 16S rDNA sequencing was conducted on fecal samples, while SIgA and indexes of IL-6, IL-1ß, and TNF-α inflammatory factors were examined in colon samples. Through immunofluorescence and histopathology, expression levels of tight junction proteins, such as claudin-1, ZO-1, and occludin, were assessed, and conduct correlation analysis on differential bacteria and related environmental factors were performed. Results: A positive correlation was observed between g_Ruminococcus1 and the risk of osteoporosis, while O_Burkholderiales showed a negative correlation with the risk of osteoporosis. Furthermore, there was no evidence of heterogeneity or pleiotropy. The successful replication of the mouse osteoporosis model was assessed, and it was found that the abundance of the O_Burkholderiales was significantly reduced, while the abundance of g_Ruminococcus was significantly increased in the ovariectomized (OVX)-mice. The intestinal SIgA level of OVX mice decreased, the expression level of inflammatory factors increased, barrier damage occurred, and the content of LPS in the colon and serum significantly increased. The abundance level of O_Burkholderiales is strongly positively correlated with bone formation factors, gut barrier indicators, bone density, bone volume fraction, and trabecular bone quantity, whereas it was strongly negatively correlated with bone resorption factors and intestinal inflammatory factors, The abundance level of g_Ruminococcus shows a strong negative correlation with bone formation factors, gut barrier indicators, and bone volume fraction, and a strong positive correlation with bone resorption factors and intestinal inflammatory factors. Conclusion: O_Burkholderiales and g_Ruminococcus may regulate the development of osteoporosis through the microbiota-gut-bone axis.

3.
EFORT Open Rev ; 9(6): 458-466, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828978

ABSTRACT

Purpose: For many decades, patients recovering from wound closure have been instructed not to bathe. Although studies have shown that earlier postoperative bathing does not increase the risk of wound infection, it remains rare in practice for patients to be allowed earlier postoperative bathing. We performed this meta-analysis to determine how earlier bathing affected rates of wound infection, other complications, and patient satisfaction. Methods: This systematic review conforms to PRISMA guidelines. The PubMed, EMBASE, Medline, Web of Science, and the Cochrane Central Register of Controlled Trials were searched from their inception dates to December 31, 2022. We estimated pooled values for the efficacy of trial of earlier bathing versus delayed bathing using the odds ratio and their associated 95% CI, and we used the I 2 statistic to assess heterogeneity between studies contributing to these estimates. Results: Of the 1813 articles identified by our search, 11 randomized controlled trials including 2964 patients were eligible for inclusion. The incidence of wound infection did not differ significantly between the earlier bathing and delayed bathing groups, nor did rates of other wound complications such as redness and swelling, or wound dehiscence. However, the incidence of hematoma in the delayed bathing group was higher than in the earlier bathing group. Reported patient satisfaction was significantly higher in the earlier bathing group. Conclusion: The medical community, health authorities, and government should create and disseminate clinical practice guidelines to guide patients to evidence-based beneficial treatment.

4.
Phytomedicine ; 131: 155775, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38838401

ABSTRACT

BACKGROUND: The cyclin-dependent kinase 4 (CDK4) interacts with its canonical and non-canonical substrates modulating the cell cycle in tumor cells. However, the potential substrates and the beyond-cell-cycle-regulated functions of CDK4 in colon cancer (CC) are still unknown. Hernandezine (HER) is previously verified to induce G0/G1 phase arrest and autophagic cell death in human cancer cells, which implies that HER might target G0/G1 phase-related proteins, including CDK4. PURPOSE: The present study tried to investigate the glycolytic metabolism and oxidative stress functions of CDK4 in colon cancer. Furthermore, the inhibitory effects and potential binding sites of HER on CDK4, as well as its anti-tumor activity were investigated in CC cells. METHODS: The mass spectrometry assay was performed to identify potential endogenous substrates of CDK4 and the correlation between glycolytic metabolic rate and CDK4 level in COAD patient tissues. Meanwhile, after inhibiting the activity or the expression of CDK4, the binding capacity of CDK4 to PKM2 and NRF2 and the latter two protein distributions in cytoplasm and nucleus were detected in CC cells. In vitro, the regulatory effects of the CDK4-PKM2-NRF2 axis on glycolysis and oxidative stress were performed by ECAR, OCR, and ROS assay. The inhibitory effect of HER on CDK4 activity was explored in CC cells and the potential binding sites were predicted and testified in vitro. Furthermore, tumor growth inhibition of HER by suppressing the CDK4-PKM2-NRF2 axis was also investigated in vitro and in vivo. RESULTS: PKM2 and NRF2 were identified as endogenous substrates of CDK4 and, high-expressed CDK4 was associated with low-level glycolysis in COAD. In vitro, inactivated CDK4 facilitated CDK4-PKM2-NRF2 complex formation which resulted in 1) inhibited PKM2 activity and retarded the glycolytic rate; 2) cytoplasm-detained NRF2 failed to transcript anti-oxidative gene expressions and induced oxidant stress. Additionally, as a CDK4 inhibitor, HER developed triple anti-tumor effects including induced G0/G1 phase arrest, suppressed glycolysis, and disrupted the anti-oxidative capacity of CC cells. CONCLUSION: The results first time revealed that CDK4 modulated glycolytic and anti-oxidative capacity of CC cells via bound to its endogenous substrates, PKM2 and NRF2. Additionally, 140Asp145Asn amino acid sites of CDK4 were potential targets of HER. HER exerts anti-tumor activity by inhibited the activity of CDK4, promoted the CDK4-PKM2-NRF2 complex formation in the CC cells.

5.
Eur J Med Res ; 29(1): 303, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38812041

ABSTRACT

BACKGROUND: Exosomes (Exos) are involved in the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) on heart failure (HF). We investigated the molecular mechanisms underlying the involvement of BMSC-Exos in ferroptosis on HF. METHODS: A rat model of HF and cellular model of hypoxia were established. BMSC-Exos were injected into model rats or co-cultured with model cells. In model rats, the cardiac function (echocardiography), oxidative stress (commercial kits), pathological damage (HE staining), fibrosis (MASSON staining), iron deposition (Prussian blue staining), and cell apoptosis (TUNEL staining) were examined. Viability (cell counting kit-8; CCK-8), cell cycle (flow cytometry), oxidative stress, and Fe2+ levels were detected in the model cells. GAS5, UL3, YAP, and TAZ expression were detected using qRT-PCR, western blotting, and immunohistochemistry analyses. RESULTS: BMSC-Exos restored cardiac function and inhibited oxidative stress, apoptosis, pathological damage, fibrosis, and iron deposition in myocardial tissues of HF rats. In hypoxic cells, BMSC-Exos increased cell viability, decreased the number of G1 phase cells, decreased Fe2+ levels, and inhibited oxidative stress. Ferrostatin-1 (a ferroptosis inhibitor) exhibited a synergistic effect with BMSC-Exos. Additionally, GAS5 was upregulated in BMSC-Exos, further upregulating its target UL3 and Hippo pathway effectors (YAP and TAZ). The relieving effects of BMSC-Exos on HF or hypoxia-induced injury were enhanced by GAS5 overexpression, but weakened by UL3 silencing or verteporfin (a YAP inhibitor). CONCLUSIONS: GAS5-harbouring BMSC-Exos inhibited ferroptosis by regulating the UL3/Hippo pathway, contributing to HF remission in vivo and in vitro.


Subject(s)
Exosomes , Ferroptosis , Heart Failure , Mesenchymal Stem Cells , RNA, Long Noncoding , Ferroptosis/genetics , Animals , Rats , Heart Failure/metabolism , Heart Failure/therapy , Heart Failure/genetics , Mesenchymal Stem Cells/metabolism , Exosomes/metabolism , RNA, Long Noncoding/genetics , Male , Hippo Signaling Pathway , Rats, Sprague-Dawley , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Oxidative Stress , Apoptosis , Disease Models, Animal
7.
Aging (Albany NY) ; 16(9): 8086-8109, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38728245

ABSTRACT

BACKGROUND: Research has shown a connection between vasculogenic mimicry (VM) and cancer progression. However, the functions of genes related to VM in the emergence and progression of TNBC have not been completely elucidated. METHODS: A survival risk model was constructed by screening biomarkers using DESeq2 and WGCNA based on public TNBC transcriptome data. Furthermore, gene set enrichment analysis was performed, and tumor microenvironment and drug sensitivity were analyzed. The selected biomarkers were validated via quantitative PCR detection, immunohistochemical staining, and protein detection in breast cancer cell lines. Biomarkers related to the proliferation and migration of TNBC cells were validated via in vitro experiments. RESULTS: The findings revealed that 235 target genes were connected to the complement and coagulation cascade pathways. The risk score was constructed using KCND2, NRP1, and VSTM4. The prognosis model using the risk score and pathological T stage yielded good validation results. The clinical risk of TNBC was associated with the angiogenesis signaling pathway, and the low-risk group exhibited better sensitivity to immunotherapy. Quantitative PCR and immunohistochemistry indicated that the expression levels of KCND2 in TNBC tissues were higher than those in adjacent nontumor tissues. In the TNBC cell line, the protein expression of KCND2 was increased. Knockdown of KCND2 and VSTM4 inhibited the proliferation and migration of TNBC cells in vitro. CONCLUSIONS: In this study, three VM-related biomarkers were identified, including KCND2, NRP1, and VSTM4. These findings are likely to aid in deepening our understanding of the regulatory mechanism of VM in TNBC.


Subject(s)
Biomarkers, Tumor , Neovascularization, Pathologic , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Female , Prognosis , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Cell Proliferation/genetics , Neuropilin-1/genetics , Neuropilin-1/metabolism , Cell Movement/genetics , Transcriptome , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism
8.
J Cell Mol Med ; 28(9): e18374, 2024 May.
Article in English | MEDLINE | ID: mdl-38722288

ABSTRACT

The majority of advanced breast cancers exhibit strong aggressiveness, heterogeneity, and drug resistance, and currently, the lack of effective treatment strategies is one of the main challenges that cancer research must face. Therefore, developing a feasible preclinical model to explore tailored treatments for refractory breast cancer is urgently needed. We established organoid biobanks from 17 patients with breast cancer and characterized them by immunohistochemistry (IHC) and next generation sequencing (NGS). In addition, we in the first combination of patient-derived organoids (PDOs) with mini-patient-derived xenografts (Mini-PDXs) for the rapid and precise screening of drug sensitivity. We confirmed that breast cancer organoids are a high-fidelity three-dimension (3D) model in vitro that recapitulates the original tumour's histological and genetic features. In addition, for a heavily pretreated patient with advanced drug-resistant breast cancer, we combined PDO and Mini-PDX models to identify potentially effective combinations of therapeutic agents for this patient who were alpelisib + fulvestrant. In the drug sensitivity experiment of organoids, we observed changes in the PI3K/AKT/mTOR signalling axis and oestrogen receptor (ER) protein expression levels, which further verified the reliability of the screening results. Our study demonstrates that the PDO combined with mini-PDX model offers a rapid and precise drug screening platform that holds promise for personalized medicine, improving patient outcomes and addressing the urgent need for effective therapies in advanced breast cancer.


Subject(s)
Breast Neoplasms , Organoids , Precision Medicine , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Organoids/drug effects , Organoids/pathology , Organoids/metabolism , Precision Medicine/methods , Animals , Xenograft Model Antitumor Assays , Mice , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor/methods , Middle Aged
9.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747931

ABSTRACT

BACKGROUND: The goal of the study was to provide an individual and precise genetic and molecular biological basis for the early prevention, diagnosis, and treatment of local FH by analyzing the risk factors for the development of FH in Han and Mongolian patients in the Hulunbuir, comparing the lipid levels of FH patients of the two ethnicities, and assessing differences in mutations to two genes between the two ethnic groups. METHODS: Twenty cases each of Han Chinese and Mongolian healthy controls and fifty patients who each met the inclusion criteria from November 2021 to December 2022 in five general hospitals in Hulunbuir were selected. Multifactor logistic analysis was used to analyze the risk factors associated with the development of FH. We used t-tests to analyze statistical differences in lipid levels between the groups, and Sanger sequencing to detect the dis-tribution of common mutation sites of PCSK9 and APOB in all study subjects. The mutation rates and differences between regions and ethnic groups were summarized and compared. RESULTS: 1) Gender, age, alcohol consumption, dietary status, and a family history of FH were risk factors associated with the development of FH. 2) TC, LDL-C, and APOB were significantly higher in Mongolian cases than Han cases (p < 0.05). sdLDL-C was not statistically different between the two ethnicities (p > 0.05). 3) We detected four (8%) heterozygous mutations at the PCSK9 gene E670G mutation site in the Han case group and a total of nine (18%) mutations at this site in the Mongolian cases, including one (2%) homozygous and eight (16%) heterozygous mutations. One case of a heterozygous mutation was detected in the Mongolian control group. We detected a total of ten (20%) mutations at the APOB gene rs1367117 mutation site in the Han case group, including eight (16%) heterozygous and two (4%) homozygous mutations, 11 cases (22%) of heterozygous mutations in the Mongolian case group, two cases of heterozygous mutations in the Han control group, and one case of a heterozygous mutation in the Mongolian control group. 4) The D374Y and S127R mutation sites of PCSK9 and the R3500Q mutation site of APOB were not detected in any of the study subjects. CONCLUSIONS: The mutation sites of the PCSK9 and APOB genes in FH patients in Hulunbuir are different from other regions, and the mutation rate is higher than in other regions. Therefore, we recommend that the mutation sites of the PCSK9 and APOB genes described herein be used as clinical detection indicators to assist the diagnosis of FH in this region.


Subject(s)
Apolipoprotein B-100 , Hyperlipoproteinemia Type II , Mutation , Proprotein Convertase 9 , Humans , Proprotein Convertase 9/genetics , Male , Female , Middle Aged , Risk Factors , China/epidemiology , Apolipoprotein B-100/genetics , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/ethnology , Hyperlipoproteinemia Type II/diagnosis , Asian People/genetics , Adult , Mongolia/epidemiology , Mongolia/ethnology , Case-Control Studies , Genetic Predisposition to Disease , Cholesterol, LDL/blood , Ethnicity/genetics , Aged
10.
Cancer Lett ; 593: 216956, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38735381

ABSTRACT

Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.

11.
Nat Commun ; 15(1): 4106, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750031

ABSTRACT

China's extensive planted forests play a crucial role in carbon storage, vital for climate change mitigation. However, the complex spatiotemporal dynamics of China's planted forest area and its carbon storage remain uncaptured. Here we reveal such changes in China's planted forests from 1990 to 2020 using satellite and field data. Results show a doubling of planted forest area, a trend that intensified post-2000. These changes lead to China's planted forest carbon storage increasing from 675.6 ± 12.5 Tg C in 1990 to 1,873.1 ± 16.2 Tg C in 2020, with an average rate of ~ 40 Tg C yr-1. The area expansion of planted forests contributed ~ 53% (637.2 ± 5.4 Tg C) of the total above increased carbon storage in planted forests compared with planted forest growth. This proactive policy-driven expansion of planted forests has catalyzed a swift increase in carbon storage, aligning with China's Carbon Neutrality Target for 2060.

12.
Mikrochim Acta ; 191(6): 321, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38727732

ABSTRACT

The rapid and precise monitoring of peripheral blood miRNA levels holds paramount importance for disease diagnosis and treatment monitoring. In this study, we propose an innovative research strategy that combines the catalytic hairpin assembly reaction with SERS signal congregation and enhancement. This combination can significantly enhance the stability of SERS detection, enabling stable and efficient detection of miRNA. Specifically, our paper-based SERS detection platform incorporates a streptavidin-modified substrate, biotin-labeled catalytic hairpin assembly reaction probes, 4-ATP, and primer-co-modified gold nanoparticles. In the presence of miRNA, the 4-ATP and primer-co-modified gold nanoparticles can specifically recognize the miRNA and interact with the biotin-labeled CHA probes to initiate an interfacial catalytic hairpin assembly reaction. This enzyme-free high-efficiency catalytic process can accumulate a large amount of biotin on the gold nanoparticles, which then bind to the streptavidin on the substrate with the assistance of the driving liquid, forming red gold nanoparticle stripes. These provide a multitude of hotspots for SERS, enabling enhanced signal detection. This innovative design achieves a low detection limit of 3.47 fM while maintaining excellent stability and repeatability. This conceptually innovative detection platform offers new technological possibilities and solutions for clinical miRNA detection.


Subject(s)
Biotin , Gold , Limit of Detection , Metal Nanoparticles , MicroRNAs , Spectrum Analysis, Raman , MicroRNAs/blood , MicroRNAs/analysis , Metal Nanoparticles/chemistry , Gold/chemistry , Spectrum Analysis, Raman/methods , Biotin/chemistry , Humans , Catalysis , Streptavidin/chemistry
13.
Ann Gen Psychiatry ; 23(1): 19, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730281

ABSTRACT

BACKGROUND: Anxiety disorders can cause serious physical and psychological damage, so many anxiety scales have been developed internationally to measure anxiety disorders, but due to the cultural differences and cultural dependence of quality of life between Chinese and Western cultures, it is difficult to reflect the main characteristics of Chinese patients. Therefore, we developed a scale suitable for Chinese patients with anxiety disorders: the Anxiety Disorders Scale of the Quality of Life Instruments for Chronic Diseases (QLICD-AD), hoping to achieve satisfactory QOL assessments for anxiety disorders. OBJECTIVES: Items from the Anxiety Disorders Scale of the Quality of Life in Chronic Disease Instrument QLICD-AD system were analyzed using CTT and IRT to lay the groundwork for further refinement of the scale to accurately measure anxiety disorders. METHODS: 120 patients with anxiety disorder were assessed using the QLICD-AD (V2.0). Descriptive statistics, variability method, correlation coefficient method, factor analysis and Cronbach's coefficient of CTT, and graded response model (GRM) of item response theory were used to analyze the items of the scale. RESULT: CTT analysis showed that the standard deviation of each item was between 0.928 and 1.466; Pearson correlation coefficients of item-to-domain were generally greater than 0.5 and also greater than that of item-to-other domain; the Cronbach 's of the total scale was 0.931, α of each domain was between 0.706 and 0.865. IRT analysis showed that the discrimination was between 1.14 and 1.44. The difficulty parameter of all items increased with the increase of grade. But some items (GPH6,GPH8,GPS3,GSO2-GSO4,AD2,AD5) difficulty parameters were less than 4 or greater than 4. The average of information amount was between 0.022 and 0.910. CONCLUSION: Based on CTT and IRT analysis, most items of the QLICD-AD (V2.0) scale have good performance and good differentiation, but a few items still need further revision. Suggests that the QLICD-AD (V2.0) appears to be a valid measure of anxiety disorders. It may effectively improve the diagnosticity of anxiety disorders, but due to the limitations of the current sample, further validation is needed in a broader population extrapolation trial.

15.
World J Gastrointest Surg ; 16(5): 1336-1343, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38817276

ABSTRACT

BACKGROUND: Magnetic anchor technique (MAT) has been applied in laparoscopic cholecystectomy and laparoscopic appendectomy, but has not been reported in laparoscopic partial hepatectomy. AIM: To evaluate the feasibility of the MAT in laparoscopic left lateral segment liver resection. METHODS: Retrospective analysis was conducted on the clinical data of eight patients who underwent laparoscopic left lateral segment liver resection assisted by MAT in our department from July 2020 to November 2021. The Y-Z magnetic anchor devices (Y-Z MADs) was independently designed and developed by the author of this paper, which consists of the anchor magnet and magnetic grasping apparatus. Surgical time, intraoperative blood loss, intraoperative accidents, operator experience, postoperative incision pain score, postoperative complications, and other indicators were evaluated and analyzed. RESULTS: All eight patients underwent a MAT-assisted laparoscopic left lateral segment liver resection, including three patients undertaking conventional 5-port and five patients having a transumbilical single-port operation. The mean operation time was 138 ± 34.32 min (range 95-185 min) and the mean intraoperative blood loss was 123 ± 88.60 mL (range 20-300 mL). No adverse events occurred during the operation. The Y-Z MADs showed good workability and maneuverability in both tissue and organ exposure. In particular, the operators did not experience either a "chopstick" or "sword-fight" effect in the single-port laparoscopic operation. CONCLUSION: The results show that the MAT is safe and feasible for laparoscopic left lateral segment liver resection, especially, exhibits its unique abettance for transumbilical single-port laparoscopic left lateral segment liver resection.

16.
Sci Adv ; 10(14): eadn1272, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578992

ABSTRACT

Direct conversion of hydrocarbons into amines represents an important and atom-economic goal in chemistry for decades. However, intermolecular cross-coupling of terminal alkenes with amines to form branched amines remains extremely challenging. Here, a visible-light and Co-dual catalyzed direct allylic C─H amination of alkenes with free amines to afford branched amines has been developed. Notably, challenging aliphatic amines with strong coordinating effect can be directly used as C─N coupling partner to couple with allylic C─H bond to form advanced amines with molecular complexity. Moreover, the reaction proceeds with exclusive regio- and chemoselectivity at more steric hinder position to deliver primary, secondary, and tertiary aliphatic amines with diverse substitution patterns that are difficult to access otherwise.

17.
Front Pharmacol ; 15: 1333235, 2024.
Article in English | MEDLINE | ID: mdl-38572429

ABSTRACT

Background: Cognitive deficits and behavioral disorders such as anxiety and depression are common manifestations of Alzheimer's disease (AD). Our previous work demonstrated that Trichostatin A (TSA) could alleviate neuroinflammatory plaques and improve cognitive disorders. AD, anxiety, and depression are all associated with microglial inflammation. However, whether TSA could attenuate anxiety- and depression-like behaviors in APP/PS1 mice through anti-inflammatory signaling is still unclearly. Methods: In the present study, all mice were subjected to the open field, elevated plus maze, and forced swim tests to assess anxiety- and depression-related behaviors after TSA administration. To understand the possible mechanisms underlying the behavioral effects observed, CST7 was measured in the hippocampus of mice and LPS-treated BV2 microglia. Results: The results of this study indicated that TSA administration relieved the behaviors of depression and anxiety in APP/PS1 mice, and decreased CST7 levels in the hippocampus of APP/PS1 mice and LPS-induced BV2 cells. Conclusion: Overall, these findings support the idea that TSA might be beneficial for reducing neurobehavioral disorders in AD and this could be due to suppression of CST7-related microglial inflammation.

18.
Front Pharmacol ; 15: 1359319, 2024.
Article in English | MEDLINE | ID: mdl-38584597

ABSTRACT

The α2-adrenoceptor agonist dexmedetomidine is a commonly used drug for sedatives in clinics and has analgesic effects; however, its mechanism of analgesia in the spine remains unclear. In this study, we systematically used behavioural and transcriptomic sequencing, pharmacological intervention, electrophysiological recording and ultrasound imaging to explore the analgesic effects of the α2-adrenoceptor and its molecular mechanism. Firstly, we found that spinal nerve injury changed the spinal transcriptome expression, and the differential genes were mainly related to calcium signalling and tissue metabolic pathways. In addition, α2-adrenoceptor mRNA expression was significantly upregulated, and α2-adrenoceptor was significantly colocalised with markers, particularly neuronal markers. Intrathecal dexmedetomidine suppressed neuropathic pain and acute inflammatory pain in a dose-dependent manner. The transcriptome results demonstrated that the analgesic effect of dexmedetomidine may be related to the modulation of neuronal metabolism. Weighted gene correlation network analysis indicated that turquoise, brown, yellow and grey modules were the most correlated with dexmedetomidine-induced analgesic effects. Bioinformatics also annotated the involvement of metabolic processes and neural plasticity. A cardiovascular-mitochondrial interaction was found, and ultrasound imaging revealed that injection of dexmedetomidine significantly enhanced spinal cord perfusion in rats with neuropathic pain, which might be regulated by pyruvate dehydrogenase kinase 4 (pdk4), cholesterol 25-hydroxylase (ch25 h) and GTP cyclohydrolase 1 (gch1). Increasing the perfusion doses of dexmedetomidine significantly suppressed the frequency and amplitude of spinal nerve ligation-induced miniature excitatory postsynaptic currents. Overall, dexmedetomidine exerts analgesic effects by restoring neuronal metabolic processes through agonism of the α2-adrenoceptor and subsequently inhibiting changes in synaptic plasticity.

19.
J Agric Food Chem ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602386

ABSTRACT

The genus Salix L. is traditionally used in folk medicine to alleviate pain caused by various kinds of inflammation. In the present study, 10 undescribed salicin derivatives along with 5 known congeners were isolated from the barks of Salix tetrasperma, and their structures were elucidated by spectroscopic analyses, single-crystal X-ray diffraction, electronic circular dichroism (ECD) calculations, and chemical conversions. Compounds 4-6 significantly inhibited NO production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, and the most active 4 obviously suppressed the production of IL-1ß and IL-6 and decreased iNOS and COX-2 expression in a dose-dependent manner. Further Western blotting analysis revealed that the anti-inflammatory mechanism of 4 is possibly mediated through the MAPK and NF-κB signaling pathways.

20.
Science ; 384(6693): 301-306, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38635711

ABSTRACT

China's massive wave of urbanization may be threatened by land subsidence. Using a spaceborne synthetic aperture radar interferometry technique, we provided a systematic assessment of land subsidence in all of China's major cities from 2015 to 2022. Of the examined urban lands, 45% are subsiding faster than 3 millimeters per year, and 16% are subsiding faster than 10 millimeters per year, affecting 29 and 7% of the urban population, respectively. The subsidence appears to be associated with a range of factors such as groundwater withdrawal and the weight of buildings. By 2120, 22 to 26% of China's coastal lands will have a relative elevation lower than sea level, hosting 9 to 11% of the coastal population, because of the combined effect of city subsidence and sea-level rise. Our results underscore the necessity of enhancing protective measures to mitigate potential damages from subsidence.

SELECTION OF CITATIONS
SEARCH DETAIL
...