Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Front Neurol ; 15: 1386728, 2024.
Article in English | MEDLINE | ID: mdl-38784909

ABSTRACT

Acuity assessments are vital for timely interventions and fair resource allocation in critical care settings. Conventional acuity scoring systems heavily depend on subjective patient assessments, leaving room for implicit bias and errors. These assessments are often manual, time-consuming, intermittent, and challenging to interpret accurately, especially for healthcare providers. This risk of bias and error is likely most pronounced in time-constrained and high-stakes environments, such as critical care settings. Furthermore, such scores do not incorporate other information, such as patients' mobility level, which can indicate recovery or deterioration in the intensive care unit (ICU), especially at a granular level. We hypothesized that wearable sensor data could assist in assessing patient acuity granularly, especially in conjunction with clinical data from electronic health records (EHR). In this prospective study, we evaluated the impact of integrating mobility data collected from wrist-worn accelerometers with clinical data obtained from EHR for estimating acuity. Accelerometry data were collected from 87 patients wearing accelerometers on their wrists in an academic hospital setting. The data was evaluated using five deep neural network models: VGG, ResNet, MobileNet, SqueezeNet, and a custom Transformer network. These models outperformed a rule-based clinical score (Sequential Organ Failure Assessment, SOFA) used as a baseline when predicting acuity state (for ground truth we labeled as unstable patients if they needed life-supporting therapies, and as stable otherwise), particularly regarding the precision, sensitivity, and F1 score. The results demonstrate that integrating accelerometer data with demographics and clinical variables improves predictive performance compared to traditional scoring systems in healthcare. Deep learning models consistently outperformed the SOFA score baseline across various scenarios, showing notable enhancements in metrics such as the area under the receiver operating characteristic (ROC) Curve (AUC), precision, sensitivity, specificity, and F1 score. The most comprehensive scenario, leveraging accelerometer, demographics, and clinical data, achieved the highest AUC of 0.73, compared to 0.53 when using SOFA score as the baseline, with significant improvements in precision (0.80 vs. 0.23), specificity (0.79 vs. 0.73), and F1 score (0.77 vs. 0.66). This study demonstrates a novel approach beyond the simplistic differentiation between stable and unstable conditions. By incorporating mobility and comprehensive patient information, we distinguish between these states in critically ill patients and capture essential nuances in physiology and functional status. Unlike rudimentary definitions, such as equating low blood pressure with instability, our methodology delves deeper, offering a more holistic understanding and potentially valuable insights for acuity assessment.

2.
Sci Rep ; 14(1): 8442, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600110

ABSTRACT

Using clustering analysis for early vital signs, unique patient phenotypes with distinct pathophysiological signatures and clinical outcomes may be revealed and support early clinical decision-making. Phenotyping using early vital signs has proven challenging, as vital signs are typically sampled sporadically. We proposed a novel, deep temporal interpolation and clustering network to simultaneously extract latent representations from irregularly sampled vital signs and derive phenotypes. Four distinct clusters were identified. Phenotype A (18%) had the greatest prevalence of comorbid disease with increased prevalence of prolonged respiratory insufficiency, acute kidney injury, sepsis, and long-term (3-year) mortality. Phenotypes B (33%) and C (31%) had a diffuse pattern of mild organ dysfunction. Phenotype B's favorable short-term clinical outcomes were tempered by the second highest rate of long-term mortality. Phenotype C had favorable clinical outcomes. Phenotype D (17%) exhibited early and persistent hypotension, high incidence of early surgery, and substantial biomarker incidence of inflammation. Despite early and severe illness, phenotype D had the second lowest long-term mortality. After comparing the sequential organ failure assessment scores, the clustering results did not simply provide a recapitulation of previous acuity assessments. This tool may impact triage decisions and have significant implications for clinical decision-support under time constraints and uncertainty.


Subject(s)
Organ Dysfunction Scores , Sepsis , Humans , Acute Disease , Phenotype , Biomarkers , Cluster Analysis
3.
PLoS One ; 19(4): e0299332, 2024.
Article in English | MEDLINE | ID: mdl-38652731

ABSTRACT

Standard race adjustments for estimating glomerular filtration rate (GFR) and reference creatinine can yield a lower acute kidney injury (AKI) and chronic kidney disease (CKD) prevalence among African American patients than non-race adjusted estimates. We developed two race-agnostic computable phenotypes that assess kidney health among 139,152 subjects admitted to the University of Florida Health between 1/2012-8/2019 by removing the race modifier from the estimated GFR and estimated creatinine formula used by the race-adjusted algorithm (race-agnostic algorithm 1) and by utilizing 2021 CKD-EPI refit without race formula (race-agnostic algorithm 2) for calculations of the estimated GFR and estimated creatinine. We compared results using these algorithms to the race-adjusted algorithm in African American patients. Using clinical adjudication, we validated race-agnostic computable phenotypes developed for preadmission CKD and AKI presence on 300 cases. Race adjustment reclassified 2,113 (8%) to no CKD and 7,901 (29%) to a less severe CKD stage compared to race-agnostic algorithm 1 and reclassified 1,208 (5%) to no CKD and 4,606 (18%) to a less severe CKD stage compared to race-agnostic algorithm 2. Of 12,451 AKI encounters based on race-agnostic algorithm 1, race adjustment reclassified 591 to No AKI and 305 to a less severe AKI stage. Of 12,251 AKI encounters based on race-agnostic algorithm 2, race adjustment reclassified 382 to No AKI and 196 (1.6%) to a less severe AKI stage. The phenotyping algorithm based on refit without race formula performed well in identifying patients with CKD and AKI with a sensitivity of 100% (95% confidence interval [CI] 97%-100%) and 99% (95% CI 97%-100%) and a specificity of 88% (95% CI 82%-93%) and 98% (95% CI 93%-100%), respectively. Race-agnostic algorithms identified substantial proportions of additional patients with CKD and AKI compared to race-adjusted algorithm in African American patients. The phenotyping algorithm is promising in identifying patients with kidney disease and improving clinical decision-making.


Subject(s)
Acute Kidney Injury , Black or African American , Glomerular Filtration Rate , Hospitalization , Renal Insufficiency, Chronic , Adult , Aged , Female , Humans , Male , Middle Aged , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Algorithms , Creatinine/blood , Kidney/physiopathology , Phenotype , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/diagnosis
4.
Curr Med Imaging ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38415468

ABSTRACT

BACKGROUND: Nowadays, people attach increasing importance to accurate and timely disease diagnosis and personalized treatment. Because of the uncertainty and latency of the pathogenesis, it is difficult to detect breast tumour early. With higher resolution, magnetic resonance imaging (MRI) has become an important method for early detection of cancer in recent years. At present, DL technology can automatically study imaging features of different depths. OBJECTIVE: This work aimed to use DL to study medical image-assisted diagnosis. METHODS: The image data were collected from the patients. ROI (region of interest) containing the complete tumor area in the medical image was generated. The ROI image was extracted, and the extracted feature data were expanded. By constructing a three-dimensional (3D) CNN model, the evaluation indicators of breast tumour diagnosis results have been proposed. In the experiment part, 3D CNN model and other models have been used to diagnose the medical image of breast tumour. RESULTS: The 3D CNN model exhibited good ROI region extraction effect and breast tumor image diagnosis effect, and the average diagnostic accuracy of breast tumor image diagnosis was 0.736, which has been found to be much higher than other models and could be applied to breast tumor medical image-aided diagnosis. CONCLUSION: The 3D CNN model has been trained by combining the two-dimensional CNN training mode, and the evaluation index of diagnostic results has been established. The experimental part verified the medical image diagnosis effect of the 3D CNN model. The model had exhibited a high ROI region extraction effect and breast tumor image diagnosis effect.

5.
Sci Rep ; 13(1): 17781, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853103

ABSTRACT

Persistence of acute kidney injury (AKI) or insufficient recovery of renal function was associated with reduced long-term survival and life quality. We quantified AKI trajectories and describe transitions through progression and recovery among hospitalized patients. 245,663 encounters from 128,271 patients admitted to UF Health between 2012 and 2019 were retrospectively categorized according to the worst AKI stage experienced within 24-h periods. Multistate models were fit for describing characteristics influencing transitions towards progressed or regressed AKI, discharge, and death. Effects of age, sex, race, admission comorbidities, and prolonged intensive care unit stay (ICU) on transition rates were examined via Cox proportional hazards models. About 20% of encounters had AKI; where 66% of those with AKI had Stage 1 as their worst AKI severity during hospitalization, 18% had Stage 2, and 16% had Stage 3 AKI (12% with kidney replacement therapy (KRT) and 4% without KRT). At 3 days following Stage 1 AKI, 71.1% (70.5-71.6%) were either resolved to No AKI or discharged, while recovery proportion was 38% (37.4-38.6%) and discharge proportion was 7.1% (6.9-7.3%) following AKI Stage 2. At 14 days following Stage 1 AKI, patients with additional frail conditions stay had lower transition proportion towards No AKI or discharge states. Multistate modeling framework is a facilitating mechanism for understanding AKI clinical course and examining characteristics influencing disease process and transition rates.


Subject(s)
Acute Kidney Injury , Intensive Care Units , Humans , Retrospective Studies , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , Renal Replacement Therapy , Disease Progression , Risk Factors
6.
JMIR Med Inform ; 11: e48297, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37646309

ABSTRACT

Background: Machine learning-enabled clinical information systems (ML-CISs) have the potential to drive health care delivery and research. The Fast Healthcare Interoperability Resources (FHIR) data standard has been increasingly applied in developing these systems. However, methods for applying FHIR to ML-CISs are variable. Objective: This study evaluates and compares the functionalities, strengths, and weaknesses of existing systems and proposes guidelines for optimizing future work with ML-CISs. Methods: Embase, PubMed, and Web of Science were searched for articles describing machine learning systems that were used for clinical data analytics or decision support in compliance with FHIR standards. Information regarding each system's functionality, data sources, formats, security, performance, resource requirements, scalability, strengths, and limitations was compared across systems. Results: A total of 39 articles describing FHIR-based ML-CISs were divided into the following three categories according to their primary focus: clinical decision support systems (n=18), data management and analytic platforms (n=10), or auxiliary modules and application programming interfaces (n=11). Model strengths included novel use of cloud systems, Bayesian networks, visualization strategies, and techniques for translating unstructured or free-text data to FHIR frameworks. Many intelligent systems lacked electronic health record interoperability and externally validated evidence of clinical efficacy. Conclusions: Shortcomings in current ML-CISs can be addressed by incorporating modular and interoperable data management, analytic platforms, secure interinstitutional data exchange, and application programming interfaces with adequate scalability to support both real-time and prospective clinical applications that use electronic health record platforms with diverse implementations.

7.
Surg Open Sci ; 14: 17-21, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37409074

ABSTRACT

Background: Incidental atherosclerotic renal artery stenosis (RAS) is common in patients undergoing vascular surgery and has been shown to be associated with postoperative AKI among patients undergoing major non-vascular surgeries. We hypothesized that patients with RAS undergoing major vascular procedures would have a higher incidence of AKI and postoperative complications than those without RAS. Methods: A single-center retrospective cohort study of 200 patients who underwent elective open aortic or visceral bypass surgery (100 with postoperative AKI; 100 without AKI) were identified. RAS was then evaluated by review of pre-surgery CTAs with readers blinded to AKI status. RAS was defined as ≥50 % stenosis. Univariate and multivariable logistic regression was used to assess association of unilateral and bilateral RAS with postoperative outcomes. Results: 17.4 % (n = 28) of patients had unilateral RAS while 6.2 % (n = 10) of patients had bilateral RAS. Patients with bilateral RAS had similar preadmission creatinine and GFR as compared to unilateral RAS or no RAS. 100 % (n = 10) of patients with bilateral RAS had postoperative AKI compared with 45 % (n = 68) of patients with unilateral or no RAS (p < 0.05). In adjusted logistic regression models, bilateral RAS predicted severe AKI (OR 5.82; CI 1.33, 25.53; p = 0.02), in-hospital mortality (OR 5.71; CI 1.03, 31.53; p = 0.05), 30-day mortality (OR 10.56; CI 2.03, 54.05; p = 0.005) and 90-day mortality (OR 6.88; CI 1.40, 33.87; p = 0.02). Conclusions: Bilateral RAS is associated with increased incidence of AKI as well as in-hospital, 30-day, and 90-day mortality suggesting it is a marker of poor outcomes and should be considered in preoperative risk stratification.

8.
Surgery ; 174(3): 709-714, 2023 09.
Article in English | MEDLINE | ID: mdl-37316372

ABSTRACT

BACKGROUND: Acute kidney injury is a common postoperative complication affecting between 10% and 30% of surgical patients. Acute kidney injury is associated with increased resource usage and chronic kidney disease development, with more severe acute kidney injury suggesting more aggressive deterioration in clinical outcomes and mortality. METHODS: We considered 42,906 surgical patients admitted to University of Florida Health (n = 51,806) between 2014 and 2021. Acute kidney injury stages were determined using the Kidney Disease Improving Global Outcomes serum creatinine criteria. We developed a recurrent neural network-based model to continuously predict acute kidney injury risk and state in the following 24 hours and compared it with logistic regression, random forest, and multi-layer perceptron models. We used medications, laboratory and vital measurements, and derived features from past one-year records as inputs. We analyzed the proposed model with integrated gradients for enhanced explainability. RESULTS: Postoperative acute kidney injury at any stage developed in 20% (10,664) of the cohort. The recurrent neural network model was more accurate in predicting nearly all categories of next-day acute kidney injury stages (including the no acute kidney injury group). The area under the receiver operating curve and 95% confidence intervals for recurrent neural network and logistic regression models were for no acute kidney injury (0.98 [0.98-0.98] vs 0.93 [0.93-0.93]), stage 1 (0.95 [0.95-0.95] vs. 0.81 [0.80-0.82]), stage 2/3 (0.99 [0.99-0.99] vs 0.96 [0.96-0.97]), and stage 3 with renal replacement therapy (1.0 [1.0-1.0] vs 1.0 [1.0-1.0]. CONCLUSION: The proposed model demonstrates that temporal processing of patient information can lead to more granular and dynamic modeling of acute kidney injury status and result in more continuous and accurate acute kidney injury prediction. We showcase the integrated gradients framework's utility as a mechanism for enhancing model explainability, potentially facilitating clinical trust for future implementation.


Subject(s)
Acute Kidney Injury , Deep Learning , Humans , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Logistic Models , Forecasting , Kidney
9.
ArXiv ; 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36945689

ABSTRACT

OBJECTIVES: We aim to quantify longitudinal acute kidney injury (AKI) trajectories and to describe transitions through progressing and recovery states and outcomes among hospitalized patients using multistate models. METHODS: In this large, longitudinal cohort study, 138,449 adult patients admitted to a quaternary care hospital between 2012 and 2019 were staged based on Kidney Disease: Improving Global Outcomes serum creatinine criteria for the first 14 days of their hospital stay. We fit multistate models to estimate probability of being in a certain clinical state at a given time after entering each one of the AKI stages. We investigated the effects of selected variables on transition rates via Cox proportional hazards regression models. RESULTS: Twenty percent of hospitalized encounters (49,325/246,964) had AKI; among patients with AKI, 66% had Stage 1 AKI, 18% had Stage 2 AKI, and 17% had AKI Stage 3 with or without RRT. At seven days following Stage 1 AKI, 69% (95% confidence interval [CI]: 68.8%-70.5%) were either resolved to No AKI or discharged, while smaller proportions of recovery (26.8%, 95% CI: 26.1%-27.5%) and discharge (17.4%, 95% CI: 16.8%-18.0%) were observed following AKI Stage 2. At 14 days following Stage 1 AKI, patients with more frail conditions (Charlson comorbidity index greater than or equal to 3 and had prolonged ICU stay) had lower proportion of transitioning to No AKI or discharge states. DISCUSSION: Multistate analyses showed that the majority of Stage 2 and higher severity AKI patients could not resolve within seven days; therefore, strategies preventing the persistence or progression of AKI would contribute to the patients' life quality. CONCLUSIONS: We demonstrate multistate modeling framework's utility as a mechanism for a better understanding of the clinical course of AKI with the potential to facilitate treatment and resource planning.

10.
ArXiv ; 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36945691

ABSTRACT

In the United States, more than 5 million patients are admitted annually to ICUs, with ICU mortality of 10%-29% and costs over $82 billion. Acute brain dysfunction status, delirium, is often underdiagnosed or undervalued. This study's objective was to develop automated computable phenotypes for acute brain dysfunction states and describe transitions among brain dysfunction states to illustrate the clinical trajectories of ICU patients. We created two single-center, longitudinal EHR datasets for 48,817 adult patients admitted to an ICU at UFH Gainesville (GNV) and Jacksonville (JAX). We developed algorithms to quantify acute brain dysfunction status including coma, delirium, normal, or death at 12-hour intervals of each ICU admission and to identify acute brain dysfunction phenotypes using continuous acute brain dysfunction status and k-means clustering approach. There were 49,770 admissions for 37,835 patients in UFH GNV dataset and 18,472 admissions for 10,982 patients in UFH JAX dataset. In total, 18% of patients had coma as the worst brain dysfunction status; every 12 hours, around 4%-7% would transit to delirium, 22%-25% would recover, 3%-4% would expire, and 67%-68% would remain in a coma in the ICU. Additionally, 7% of patients had delirium as the worst brain dysfunction status; around 6%-7% would transit to coma, 40%-42% would be no delirium, 1% would expire, and 51%-52% would remain delirium in the ICU. There were three phenotypes: persistent coma/delirium, persistently normal, and transition from coma/delirium to normal almost exclusively in first 48 hours after ICU admission. We developed phenotyping scoring algorithms that determined acute brain dysfunction status every 12 hours while admitted to the ICU. This approach may be useful in developing prognostic and decision-support tools to aid patients and clinicians in decision-making on resource use and escalation of care.

12.
Article in English | MEDLINE | ID: mdl-38585187

ABSTRACT

Delirium is a syndrome of acute brain failure which is prevalent amongst older adults in the Intensive Care Unit (ICU). Incidence of delirium can significantly worsen prognosis and increase mortality, therefore necessitating its rapid and continual assessment in the ICU. Currently, the common approach for delirium assessment is manual and sporadic. Hence, there exists a critical need for a robust and automated system for predicting delirium in the ICU. In this work, we develop a machine learning (ML) system for real-time prediction of delirium using Electronic Health Record (EHR) data. Unlike prior approaches which provide one delirium prediction label per entire ICU stay, our approach provides predictions every 12 hours. We use the latest 12 hours of ICU data, along with patient demographic and medical history data, to predict delirium risk in the next 12-hour window. This enables delirium risk prediction as soon as 12 hours after ICU admission. We train and test four ML classification algorithms on longitudinal EHR data pertaining to 16,327 ICU stays of 13,395 patients covering a total of 56,297 12-hour windows in the ICU to predict the dynamic incidence of delirium. The best performing algorithm was Categorical Boosting which achieved an area under receiver operating characteristic curve (AUROC) of 0.87 (95% Confidence Interval; C.I, 0.86-0.87). The deployment of this ML system in ICUs can enable early identification of delirium, thereby reducing its deleterious impact on long-term adverse outcomes, such as ICU cost, length of stay and mortality.

13.
Article in English | MEDLINE | ID: mdl-36532301

ABSTRACT

Established guidelines describe minimum requirements for reporting algorithms in healthcare; it is equally important to objectify the characteristics of ideal algorithms that confer maximum potential benefits to patients, clinicians, and investigators. We propose a framework for ideal algorithms, including 6 desiderata: explainable (convey the relative importance of features in determining outputs), dynamic (capture temporal changes in physiologic signals and clinical events), precise (use high-resolution, multimodal data and aptly complex architecture), autonomous (learn with minimal supervision and execute without human input), fair (evaluate and mitigate implicit bias and social inequity), and reproducible (validated externally and prospectively and shared with academic communities). We present an ideal algorithms checklist and apply it to highly cited algorithms. Strategies and tools such as the predictive, descriptive, relevant (PDR) framework, the Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence (SPIRIT-AI) extension, sparse regression methods, and minimizing concept drift can help healthcare algorithms achieve these objectives, toward ideal algorithms in healthcare.

14.
Front Digit Health ; 4: 1029191, 2022.
Article in English | MEDLINE | ID: mdl-36440460

ABSTRACT

Transformer model architectures have revolutionized the natural language processing (NLP) domain and continue to produce state-of-the-art results in text-based applications. Prior to the emergence of transformers, traditional NLP models such as recurrent and convolutional neural networks demonstrated promising utility for patient-level predictions and health forecasting from longitudinal datasets. However, to our knowledge only few studies have explored transformers for predicting clinical outcomes from electronic health record (EHR) data, and in our estimation, none have adequately derived a health-specific tokenization scheme to fully capture the heterogeneity of EHR systems. In this study, we propose a dynamic method for tokenizing both discrete and continuous patient data, and present a transformer-based classifier utilizing a joint embedding space for integrating disparate temporal patient measurements. We demonstrate the feasibility of our clinical AI framework through multi-task ICU patient acuity estimation, where we simultaneously predict six mortality and readmission outcomes. Our longitudinal EHR tokenization and transformer modeling approaches resulted in more accurate predictions compared with baseline machine learning models, which suggest opportunities for future multimodal data integrations and algorithmic support tools using clinical transformer networks.

15.
Comput Intell Neurosci ; 2022: 3373553, 2022.
Article in English | MEDLINE | ID: mdl-36188697

ABSTRACT

Big data in health care has gained popularity in recent years for disease prediction. Breast cancer infections are the most common cancer in urban Indian women, as well as women internationally, and are impacted by many events across countries and regions. Breast malignant growth is a notable disease among Indian women. According to the WHO, it represents 14% of all malignant growth tumors in women. A couple of studies have been directed utilizing big data to foresee breast malignant growth. Big data is causing a transformation in healthcare, with better and more ideal results. Monstrous volumes of patient-level data are created by using EHR (Electronic Health Record) systems data because of fast mechanical upgrades. Big data applications in the healthcare business will assist with improving results. Conventional forecast models, then again, are less productive in terms of accuracy and error rate because the exact pace of a specific calculation relies upon different factors such as execution structure, datasets (little or enormous), and kinds of datasets utilized (trait-based or picture based). This audit article looks at complex information mining, AI, and profound learning models utilized for recognizing breast malignant growth. Since "early identification is the way to avoidance in any malignant growth," the motivation behind this audit article is to support the choice of fitting breast disease expectation calculations, explicitly in the big information climate, to convey powerful and productive results. This survey article analyzes the precision paces of perplexing information mining, AI, and profound learning models utilized for distinguishing breast disease on the grounds that the exactness pace of a specific calculation relies upon different factors such as execution structure, datasets (little or enormous), and dataset types (quality based or picture based). The reason for this audit article is to aid the determination of suitable breast disease expectation calculations, explicitly in the big information climate, to convey successful and productive outcomes. Thus, "Early discovery is the way to counteraction in the event of any malignant growth."


Subject(s)
Big Data , Breast Neoplasms , Breast Neoplasms/diagnosis , Breast Neoplasms/surgery , Delivery of Health Care , Female , Humans , Technology
16.
Front Artif Intell ; 5: 842306, 2022.
Article in English | MEDLINE | ID: mdl-36034597

ABSTRACT

Human pathophysiology is occasionally too complex for unaided hypothetical-deductive reasoning and the isolated application of additive or linear statistical methods. Clustering algorithms use input data patterns and distributions to form groups of similar patients or diseases that share distinct properties. Although clinicians frequently perform tasks that may be enhanced by clustering, few receive formal training and clinician-centered literature in clustering is sparse. To add value to clinical care and research, optimal clustering practices require a thorough understanding of how to process and optimize data, select features, weigh strengths and weaknesses of different clustering methods, select the optimal clustering method, and apply clustering methods to solve problems. These concepts and our suggestions for implementing them are described in this narrative review of published literature. All clustering methods share the weakness of finding potential clusters even when natural clusters do not exist, underscoring the importance of applying data-driven techniques as well as clinical and statistical expertise to clustering analyses. When applied properly, patient and disease phenotype clustering can reveal obscured associations that can help clinicians understand disease pathophysiology, predict treatment response, and identify patients for clinical trial enrollment.

17.
J Surg Res ; 277: 372-383, 2022 09.
Article in English | MEDLINE | ID: mdl-35569215

ABSTRACT

INTRODUCTION: Sepsis has complex, time-sensitive pathophysiology and important phenotypic subgroups. The objective of this study was to use machine learning analyses of blood and urine biomarker profiles to elucidate the pathophysiologic signatures of subgroups of surgical sepsis patients. METHODS: This prospective cohort study included 243 surgical sepsis patients admitted to a quaternary care center between January 2015 and June 2017. We applied hierarchical clustering to clinical variables and 42 blood and urine biomarkers to identify phenotypic subgroups in a development cohort. Clinical characteristics and short-term and long-term outcomes were compared between clusters. A naïve Bayes classifier predicted cluster labels in a validation cohort. RESULTS: The development cohort contained one cluster characterized by early organ dysfunction (cluster I, n = 18) and one cluster characterized by recovery (cluster II, n = 139). Cluster I was associated with higher Acute Physiologic Assessment and Chronic Health Evaluation II (30 versus 16, P < 0.001) and SOFA scores (13 versus 5, P < 0.001), greater prevalence of chronic cardiovascular and renal disease (P < 0.001) and septic shock (78% versus 17%, P < 0.001). Cluster I had higher mortality within 14 d of sepsis onset (11% versus 1.5%, P = 0.001) and within 1 y (44% versus 20%, P = 0.032), and higher incidence of chronic critical illness (61% versus 30%, P = 0.001). The Bayes classifier achieved 95% accuracy and identified two clusters that were similar to development cohort clusters. CONCLUSIONS: Machine learning analyses of clinical and biomarker variables identified an early organ dysfunction sepsis phenotype characterized by inflammation, renal dysfunction, endotheliopathy, and immunosuppression, as well as poor short-term and long-term clinical outcomes.


Subject(s)
Multiple Organ Failure , Sepsis , Bayes Theorem , Biomarkers , Hospital Mortality , Humans , Organ Dysfunction Scores , Prospective Studies , Sepsis/diagnosis , Sepsis/epidemiology , Sepsis/etiology
18.
JAMA Netw Open ; 5(5): e2211973, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35576007

ABSTRACT

Importance: Predicting postoperative complications has the potential to inform shared decisions regarding the appropriateness of surgical procedures, targeted risk-reduction strategies, and postoperative resource use. Realizing these advantages requires that accurate real-time predictions be integrated with clinical and digital workflows; artificial intelligence predictive analytic platforms using automated electronic health record (EHR) data inputs offer an intriguing possibility for achieving this, but there is a lack of high-level evidence from prospective studies supporting their use. Objective: To examine whether the MySurgeryRisk artificial intelligence system has stable predictive performance between development and prospective validation phases and whether it is feasible to provide automated outputs directly to surgeons' mobile devices. Design, Setting, and Participants: In this prognostic study, the platform used automated EHR data inputs and machine learning algorithms to predict postoperative complications and provide predictions to surgeons, previously through a web portal and currently through a mobile device application. All patients 18 years or older who were admitted for any type of inpatient surgical procedure (74 417 total procedures involving 58 236 patients) between June 1, 2014, and September 20, 2020, were included. Models were developed using retrospective data from 52 117 inpatient surgical procedures performed between June 1, 2014, and November 27, 2018. Validation was performed using data from 22 300 inpatient surgical procedures collected prospectively from November 28, 2018, to September 20, 2020. Main Outcomes and Measures: Algorithms for generalized additive models and random forest models were developed and validated using real-time EHR data. Model predictive performance was evaluated primarily using area under the receiver operating characteristic curve (AUROC) values. Results: Among 58 236 total adult patients who received 74 417 major inpatient surgical procedures, the mean (SD) age was 57 (17) years; 29 226 patients (50.2%) were male. Results reported in this article focus primarily on the validation cohort. The validation cohort included 22 300 inpatient surgical procedures involving 19 132 patients (mean [SD] age, 58 [17] years; 9672 [50.6%] male). A total of 2765 patients (14.5%) were Black or African American, 14 777 (77.2%) were White, 1235 (6.5%) were of other races (including American Indian or Alaska Native, Asian, Native Hawaiian or Pacific Islander, and multiracial), and 355 (1.9%) were of unknown race because of missing data; 979 patients (5.1%) were Hispanic, 17 663 (92.3%) were non-Hispanic, and 490 (2.6%) were of unknown ethnicity because of missing data. A greater number of input features was associated with stable or improved model performance. For example, the random forest model trained with 135 input features had the highest AUROC values for predicting acute kidney injury (0.82; 95% CI, 0.82-0.83); cardiovascular complications (0.81; 95% CI, 0.81-0.82); neurological complications, including delirium (0.87; 95% CI, 0.87-0.88); prolonged intensive care unit stay (0.89; 95% CI, 0.88-0.89); prolonged mechanical ventilation (0.91; 95% CI, 0.90-0.91); sepsis (0.86; 95% CI, 0.85-0.87); venous thromboembolism (0.82; 95% CI, 0.81-0.83); wound complications (0.78; 95% CI, 0.78-0.79); 30-day mortality (0.84; 95% CI, 0.82-0.86); and 90-day mortality (0.84; 95% CI, 0.82-0.85), with accuracy similar to surgeons' predictions. Compared with the original web portal, the mobile device application allowed efficient fingerprint login access and loaded data approximately 10 times faster. The application output displayed patient information, risk of postoperative complications, top 3 risk factors for each complication, and patterns of complications for individual surgeons compared with their colleagues. Conclusions and Relevance: In this study, automated real-time predictions of postoperative complications with mobile device outputs had good performance in clinical settings with prospective validation, matching surgeons' predictive accuracy.


Subject(s)
Artificial Intelligence , Electronic Health Records , Adult , Algorithms , Female , Humans , Machine Learning , Male , Middle Aged , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Prospective Studies , Retrospective Studies
19.
Nat Rev Nephrol ; 18(7): 452-465, 2022 07.
Article in English | MEDLINE | ID: mdl-35459850

ABSTRACT

Kidney pathophysiology is often complex, nonlinear and heterogeneous, which limits the utility of hypothetical-deductive reasoning and linear, statistical approaches to diagnosis and treatment. Emerging evidence suggests that artificial intelligence (AI)-enabled decision support systems - which use algorithms based on learned examples - may have an important role in nephrology. Contemporary AI applications can accurately predict the onset of acute kidney injury before notable biochemical changes occur; can identify modifiable risk factors for chronic kidney disease onset and progression; can match or exceed human accuracy in recognizing renal tumours on imaging studies; and may augment prognostication and decision-making following renal transplantation. Future AI applications have the potential to make real-time, continuous recommendations for discrete actions and yield the greatest probability of achieving optimal kidney health outcomes. Realizing the clinical integration of AI applications will require cooperative, multidisciplinary commitment to ensure algorithm fairness, overcome barriers to clinical implementation, and build an AI-competent workforce. AI-enabled decision support should preserve the pre-eminence of wisdom and augment rather than replace human decision-making. By anchoring intuition with objective predictions and classifications, this approach should favour clinician intuition when it is honed by experience.


Subject(s)
Decision Support Systems, Clinical , Nephrology , Algorithms , Artificial Intelligence , Humans
20.
Article in English | MEDLINE | ID: mdl-34398763

ABSTRACT

MOTIVATION: In bioinformatics, complex cellular modeling and behavior simulation to identify significant molecular interactions is considered a relevant problem. Traditional methods model such complex systems using single and binary network. However, this model is inadequate to represent biological networks as different sets of interactions can simultaneously take place for different interaction constraints (such as transcription regulation and protein interaction). Furthermore, biological systems may exhibit varying interaction topologies even for the same interaction type under different developmental stages or stress conditions. Therefore, models which consider biological systems as solitary interactions are inaccurate as they fail to capture the complex behavior of cellular interactions within organisms. Identification and counting of recurrent motifs within a network is one of the fundamental problems in biological network analysis. Existing methods for motif counting on single network topologies are inadequate to capture patterns of molecular interactions that have significant changes in biological expression when identified across different organisms that are similar, or even time-varying networks within the same organism. That is, they fail to identify recurrent interactions as they consider a single snapshot of a network among a set of multiple networks. Therefore, we need methods geared towards studying multiple network topologies and the pattern conservation among them. Contributions: In this paper, we consider the problem of counting the number of instances of a user supplied motif topology in a given multilayer network. We model interactions among a set of entities (e.g., genes)describing various conditions or temporal variation as multilayer networks. Thus a separate network as each layer shows the connectivity of the nodes under a unique network state. Existing motif counting and identification methods are limited to single network topologies, and thus cannot be directly applied on multilayer networks. We apply our model and algorithm to study frequent patterns in cellular networks that are common in varying cellular states under different stress conditions, where the cellular network topology under each stress condition describes a unique network layer. RESULTS: We develop a methodology and corresponding algorithm based on the proposed model for motif counting in multilayer networks. We performed experiments on both real and synthetic datasets. We modeled the synthetic datasets under a wide spectrum of parameters, such as network size, density, motif frequency. Results on synthetic datasets demonstrate that our algorithm finds motif embeddings with very high accuracy compared to existing state-of-the-art methods such as G-tries, ESU (FANMODE)and mfinder. Furthermore, we observe that our method runs from several times to several orders of magnitude faster than existing methods. For experiments on real dataset, we consider Escherichia coli (E. coli)transcription regulatory network under different experimental conditions. We observe that the genes selected by our method conserves functional characteristics under various stress conditions with very low false discovery rates. Moreover, the method is scalable to real networks in terms of both network size and number of layers.


Subject(s)
Escherichia coli , Gene Regulatory Networks , Algorithms , Computational Biology/methods , Escherichia coli/genetics , Gene Regulatory Networks/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...