Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Int J Biol Macromol ; : 132473, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795886

ABSTRACT

Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) serve as transcriptional co-activators that dynamically shuttle between the cytoplasm and nucleus, resulting in either the suppression or enhancement of their downstream gene expression. Recent emerging evidence demonstrates that YAP/TAZ is strongly implicated in the pathophysiological processes that contribute to cardiovascular diseases (CVDs). In the cardiovascular system, YAP/TAZ is involved in the orchestration of a range of biological processes such as oxidative stress, inflammation, proliferation, and autophagy. Furthermore, YAP/TAZ has been revealed to be closely associated with the initiation and development of various cardiovascular diseases, including atherosclerosis, pulmonary hypertension, myocardial fibrosis, cardiac hypertrophy, and cardiomyopathy. In this review, we delve into recent studies surrounding YAP and TAZ, along with delineating their roles in contributing to the pathogenesis of CVDs with a link to various physiological processes in the cardiovascular system. Additionally, we highlight the current potential drugs targeting YAP/TAZ for CVDs therapy and discuss their challenges for translational application. Overall, this review may offer novel insights for understanding and treating cardiovascular disorders.

2.
Chem Asian J ; : e202400181, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705859

ABSTRACT

In Li-ion batteries, the origin of memory effect in Al-doped Li4Ti5O12 has been revealed as the reversible Al-ion switching between 8a and 16c sites in the spinel structure, but it is still not clear about that for olivine LiFePO4, which is one of the most important cathode materials. In this work, a series of Na-doped and Ti-doped LiFePO4 are prepared in a high-temperature solid-state method, electrochemically investigated in Li-ion batteries and characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Magic-Angle-Spinning Nuclear Magnetic Resonance (MAS NMR). Compared with non-doped LiFePO4, the Ti doping can simultaneously suppress the memory effect and the Li-Fe anti-site, while they are simultaneously enhanced by the Na doping. Meanwhile, the Ti doping improves the electrochemical performance of LiFePO4, opposite to the Na doping. Accordingly, a schematic diagram of phase transition is proposed to interpret the memory effect of LiFePO4, in which the memory effect is attributed to the defect of Li-Fe anti-site.

3.
Cancer Lett ; 592: 216934, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38710299

ABSTRACT

The Staphylococcal nuclease and Tudor domain containing 1 (SND1) has been identified as an oncoprotein. Our previous study demonstrated that SND1 impedes the major histocompatibility complex class I (MHC-I) assembly by hijacking the nascent heavy chain of MHC-I to endoplasmic reticulum-associated degradation. Herein, we aimed to identify inhibitors to block SND1-MHC-I binding, to facilitate the MHC-I presentation and tumor immunotherapy. Our findings validated the importance of the K490-containing sites in SND1-MHC-I complex. Through structure-based virtual screening and docking analysis, (-)-Epigallocatechin (EGC) exhibited the highest docking score to prevent the binding of MHC-I to SND1 by altering the spatial conformation of SND1. Additionally, EGC treatment resulted in increased expression levels of membrane-presented MHC-I in tumor cells. The C57BL/6J murine orthotopic melanoma model validated that EGC increases infiltration and activity of CD8+ T cells in both the tumor and spleen. Furthermore, the combination of EGC with programmed death-1 (PD-1) antibody demonstrated a superior antitumor effect. In summary, we identified EGC as a novel inhibitor of SND1-MHC-I interaction, prompting MHC-I presentation to improve CD8+ T cell response within the tumor microenvironment. This discovery presents a promising immunotherapeutic candidate for tumors.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes , Catechin , Endonucleases , Mice, Inbred C57BL , Animals , CD8-Positive T-Lymphocytes/immunology , Mice , Humans , Antigen Presentation/immunology , Endonucleases/metabolism , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Line, Tumor , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Molecular Docking Simulation , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Melanoma, Experimental/therapy , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism
4.
Food Chem X ; 22: 101253, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38444553

ABSTRACT

This study investigated the regulation effect of magnetic field combined with low temperature storage on postharvest quality and cell wall pectic-polysaccharide degradation of wampee stored for 15 d at 4 °C and 15 °C. Results showed that magnetic field combined with low temperature storage reduced browning rate of fruit after 15 d storage, but its effect on weight loss rate and total soluble solids (TSS) did not surpass that of storage temperature. Interestingly, contents of flavonoid, total phenols and malondialdehyde (MDA) were also lowered at varying degrees by combined treatment. Furthermore, molecular weight distribution and monosaccharide compositions of cell wall pectic-polysaccharides were also affected, which resulted from the coordinated action of cell wall pectin-degrading enzymes. The activities of these enzymes during storage, including polygalacturonase (PG), pectin methylesterase (PME) and ß-galactosidase (ß-Gal) in treated wampee decreased. These findings suggested that magnetic field combined with low temperature storage was an effective technology and had great potential in preservation of postharvest wampee in future.

5.
Bioorg Chem ; 146: 107313, 2024 May.
Article in English | MEDLINE | ID: mdl-38554675

ABSTRACT

A series of new deuterated and non-deuterated N2, N4-diphenylpyridine - 2,4-diamine derivatives were synthesized and evaluated as EGFR C797S-mediated resistance inhibitors. Most of these compounds exhibited potent antiproliferative activity against Baf3-EGFR L858R/T790M/C797S and Baf3-EGFR Del19/T790M/C797S cancel cell lines, with IC50 values in the nanomolar concentration range. Among them, compound 14l represented the most active compound with IC50 values of 8-11 nM. Interestingly, metabolic stability assay with rat liver microsomes indicated that the half-life of the deuterated derivative 14o was significantly increased compared to that of 14l. In xenograft mice models, 14o inhibited tumor growth with excellent inhibitory rate of 75.1 % at the dosage of 40 mg/kg, comparing 73.2 % of the TGI with its non-deuterated compound 14l, at a dosage of 80 mg/kg. Mechanism studies revealed that 14o was a potent EGFR L858R/T790M/C797S and EGFR Del19/T790M/C797S kinase inhibitor, which could downregulate the protein phosphorylation of EGFR and m-TOR signaling pathways, arrest cell cycle at G2/M phase by affecting the expression of CDC25C, and promote cell apoptosis by regulating the expression of cleaved caspase-3. In summary, 14o could serve as a promising deuterated compound for the development of highly efficient anticancer agents.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Humans , Mice , Rats , Animals , ErbB Receptors , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Cell Line, Tumor
6.
Int J Biol Macromol ; 265(Pt 1): 130723, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467227

ABSTRACT

Polysaccharide-stabilized emulsions have received extensive attention, but emulsifying activity of polysaccharides is poor. In this study, konjac glucomannan (KGM) and tannic acid (TA) complex (KGM-TA) was prepared via non-covalent binding to increase the polysaccharide interfacial stability. The emulsifying stabilities of KGM-TA complex-stabilized emulsions were analyzed under different TA concentrations and oil fractions. The results indicated that hydrogen bonds and hydrophobic bonds were the main binding forces for KGM-TA complex, which were closely related to TA concentrations. The interfacial tension of KGM-TA complex decreased from 20.0 mN/m to 13.4 mN/m with TA concentration increasing from 0 % to 0.3 %, indicating that TA improved the interfacial activity of KGM. Meanwhile, the contact angle of KGM-TA complex was closer to 90° with the increasing TA concentrations. The emulsifying stability of KGM-TA complex-stabilized emulsions increased in an oil mass fraction-dependent manner, reaching the maximum at 75 % oil mass fraction. Moreover, the droplet sizes of KGM-TA complex-stabilized high-internal-phase emulsions (HIPEs) decreased from 82.7 µm to 44.7 µm with TA concentration increasing from 0 to 0.3 %. Therefore, high TA concentrations were conducive to the improvement of the emulsifying stability of KGM-TA complex-stabilized HIPEs. High oil mass fraction promoted the interfacial contact of adjacent droplets, thus enhancing the non-covalent binding of KGM molecules at the interfaces with TA as bridges. Additionally, the high TA concentrations increased the gel network density in the aqueous phase, thus enhancing the emulsifying stability of emulsions. Our findings reveal the mechanisms by which polysaccharide-polyphenol complex stabilized HIPEs. Therefore, this study provides theoretical basis and references for the developments of polysaccharide emulsifier with high emulsifying capability and high-stability emulsions.


Subject(s)
Mannans , Polyphenols , Polysaccharides , Emulsions/chemistry , Particle Size , Polysaccharides/chemistry
7.
Org Biomol Chem ; 22(14): 2797-2812, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38506310

ABSTRACT

An effective [3 + 2] cycloaddition reaction of difluoromethyl or trifluoromethyl hydrazonoyl bromides with alkylidene pyrazolones was disclosed. This method provides an efficient approach for accessing a variety of highly functionalized fluoroalkyl spiropyrazolones in good yields. This protocol also features some advantages such as easily available and stable substrates, simple operation procedures, and atom and step economy. The formation of (cis)- and (trans)-products was discussed.

8.
BMC Genomics ; 25(1): 225, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424516

ABSTRACT

BACKGROUND: In epigenetic modification, histone modification and DNA methylation coordinate the regulation of spermatogonium. Not only can methylcytosine dioxygenase 1 (TET1) function as a DNA demethylase, converting 5-methylcytosine to 5-hydroxymethylcytosine, it can also form complexes with other proteins to regulate gene expression. H3K27me3, one of the common histone modifications, is involved in the regulation of stem cell maintenance and tumorigenesis by inhibiting gene transcription. METHODS: we examined JMJD3 at both mRNA and protein levels and performed Chip-seq sequencing of H3K27me3 in TET1 overexpressing cells to search for target genes and signaling pathways of its action. RESULTS: This study has found that JMJD3 plays a leading role in spermatogonia self-renewal and proliferation: at one extreme, the expression of the self-renewal gene GFRA1 and the proliferation-promoting gene PCNA was upregulated following the overexpression of JMJD3 in spermatogonia; at the other end of the spectrum, the expression of differentiation-promoting gene DAZL was down-regulated. Furthermore, the fact that TET1 and JMJD3 can form a protein complex to interact with H3K27me3 has also been fully proven. Then, through analyzing the sequencing results of CHIP-Seq, we found that TET1 targeted Pramel3 when it interacted with H3K27me3. Besides, TET1 overexpression not only reduced H3K27me3 deposition at Pramel3, but promoted its transcriptional activation as well, and the up-regulation of Pramel3 expression was verified in JMJD3-overexpressing spermatogonia. CONCLUSION: In summary, our study identified a novel link between TET1 and H3K27me3 and established a Tet1-JMJD3-H3K27me3-Pramel3 axis to regulate spermatogonia self-renewal and proliferation. Judging from the evidence offered above, we can safely conclude that this study provides new ideas for further research regarding the mechanism of spermatogenesis and spermatogenesis disorders on an apparent spectrum.


Subject(s)
Histones , Spermatogonia , Male , Humans , Histones/metabolism , Spermatogonia/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Cell Differentiation/genetics , Cell Proliferation
9.
Ann Hematol ; 103(4): 1345-1351, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38316642

ABSTRACT

Myelodysplastic syndrome (MDS) is a rare clonal hematopoietic disorder in children. The risk stratification system and treatment strategy for adults are unfit for children. The role of hypomethylating agents (HMAs) in higher-risk childhood MDS has not been identified. This study aimed to investigate the outcomes of hematopoietic stem cell transplantation (HSCT) in children with higher-risk MDS at one single center. A retrospective study was conducted in children with higher-risk MDS undergoing HSCT between September 2019 and March 2023 at Blood Diseases Hospital CAMS. The clinical characteristics and transplantation information were reviewed and analyzed. A total of 27 patients were analyzed, including 11 with MDS with excess blasts (MDS-EB), 14 with MDS-EB in transformation (MDS-EBt) or acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), and 2 with therapy-related MDS/AML (t-MDS/AML). Eight patients harbored monosomy 7. Before transplantation, induction therapy was administered to 25 patients, and 19 of them achieved bone marrow blasts <5% before HSCT. The stem cell source was unmanipulated-related bone marrow or peripheral blood stem cells for nineteen patients and unrelated cord blood for eight. All patients received decitabine-containing and Bu/Cy-based myeloablative conditioning; 26 patients achieved initial engraftment. The cumulative incidences of grade II-IV and grade III-IV acute graft-versus-host disease (GvHD) at 100 days were 65.4% and 42.3%, respectively. The incidence of cGvHD was 38.5%. The median follow-up was 26 (range 4-49) months after transplantation. By the end of follow-up, two patients died of complications and two died of disease progression. The probability of 3-year overall survival (OS) was 84.8% (95%CI, 71.1 to 98.5%). In summary, decitabine-containing myeloablative conditioning resulted in excellent outcomes for children with higher-risk MDS undergoing allogeneic HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Adult , Child , Humans , Decitabine/therapeutic use , Retrospective Studies , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/methods , Myelodysplastic Syndromes/drug therapy , Transplantation Conditioning/methods , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/drug therapy , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control
10.
Cell Mol Life Sci ; 81(1): 59, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279051

ABSTRACT

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.


Subject(s)
Muscle, Smooth, Vascular , Vascular System Injuries , Mice , Animals , Hyperplasia/metabolism , Vascular System Injuries/genetics , Vascular System Injuries/metabolism , Vascular System Injuries/pathology , Cell Proliferation , Serum Response Factor/genetics , Serum Response Factor/metabolism , Constriction, Pathologic/metabolism , Constriction, Pathologic/pathology , Transcription Factors/metabolism , Phenotype , Neointima/genetics , Neointima/metabolism , Neointima/pathology , Myocytes, Smooth Muscle/metabolism , Cells, Cultured , Cell Movement
11.
Clin Cancer Res ; 30(6): 1143-1151, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38170574

ABSTRACT

PURPOSE: Patient-tailored minimal residual disease (MRD) monitoring based on circulating tumor DNA (ctDNA) sequencing of leukemia-specific mutations enables early detection of relapse for pre-emptive treatment, but its utilization in pediatric acute myelogenous leukemia (AML) is scarce. Thus, we aim to examine the role of ctDNA as a prognostic biomarker in monitoring response to the treatment of pediatric AML. EXPERIMENTAL DESIGN: A prospective longitudinal study with 50 children with AML was launched, and sequential bone marrow (BM) and matched plasma samples were collected. The concordance of mutations by next-generation sequencing-based BM-DNA and ctDNA was evaluated. In addition, progression-free survival (PFS) and overall survival (OS) were estimated. RESULTS: In 195 sample pairs from 50 patients, the concordance of leukemia-specific mutations between ctDNA and BM-DNA was 92.8%. Patients with undetectable ctDNA were linked to improved OS and PFS versus detectable ctDNA in the last sampling (both P < 0.001). Patients who cleared their ctDNA post three cycles of treatment had similar PFS compared with persistently negative ctDNA (P = 0.728). In addition, patients with >3 log reduction but without clearance in ctDNA were associated with an improved PFS as were patients with ctDNA clearance (P = 0.564). CONCLUSIONS: Thus, ctDNA-based MRD monitoring appears to be a promising option to complement the overall assessment of pediatric patients with AML, wherein patients with continuous ctDNA negativity have the option for treatment de-escalation in subsequent therapy. Importantly, patients with >3 log reduction but without clearance in ctDNA may not require an aggressive treatment plan due to improved survival, but this needs further study to delineate.


Subject(s)
Circulating Tumor DNA , Leukemia, Myeloid, Acute , Humans , Child , Circulating Tumor DNA/genetics , Neoplasm, Residual/genetics , Neoplasm, Residual/diagnosis , Prospective Studies , Longitudinal Studies , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Risk Assessment , Biomarkers, Tumor/genetics
12.
Clin Rehabil ; 38(3): 305-321, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38289618

ABSTRACT

OBJECTIVE: To examine the effectiveness of virtual reality (VR)-based rehabilitation training in improving cognition, motor function, and daily functioning in patients with mild cognitive impairment and dementia. DATA SOURCES: A systematic review of published literature was conducted using PubMed, Web of Science, Elsevier, Embase, Cochrane, CNKI, Networked Digital Library of Theses and Dissertations. METHODS: The search period was from inception to 7 October 2023. Eligible studies were randomized controlled trials evaluating the efficacy of VR-based rehabilitation training in patients with mild cognitive impairment or dementia versus control subjects. Methodologic quality was assessed with the Cochrane risk of bias tool, and outcomes were calculated as the standard mean difference between participant groups with 95% confidence interval. RESULTS: A total of 21 randomized controlled trials with 1138 patients were included. The meta-analysis showed that VR-based rehabilitation training had significant effects on Montreal Cognitive Assessment (SMD: 0.50; 95%CI: 0.05 to 0.95; P = 0.030), Trail-making test A (SMD: -0.38; 95%CI: -0.61 to -0.14; P = 0.002), and Berg Balance Scale scores (SMD: 0.79; 95%CI: 0.13 to 1.45; P = 0.020). A subgroup analysis revealed that the type of VR, and duration and frequency of interventions had statistically significant effects on cognition and motor function. CONCLUSION: VR-based rehabilitation training is a beneficial nonpharmacologic approach for managing mild cognitive impairment or dementia. Immersive VR-based training had greater effects on cognition and motor function than non-immersive VR-based training, but non-immersive VR-based training was more convenient for patients with limitations imposed by their disease. Also, an intervention lasting 5-8 weeks and for >30 min at a frequency of ≥3 times/week achieved the best results. It indicated that a longer intervention cycle may not achieve the best intervention effect and training duration and schedule should be carefully considered when managing patients.


Subject(s)
Cognitive Dysfunction , Dementia , Telerehabilitation , Virtual Reality , Humans , Cognition , Cognitive Dysfunction/diagnosis , Randomized Controlled Trials as Topic
13.
Am J Otolaryngol ; 45(3): 104212, 2024.
Article in English | MEDLINE | ID: mdl-38176205

ABSTRACT

PURPOSE: This study aimed to investigate the vitamin D deficiency of patients with BPPV recurrence and to evaluate the differences of 25-hydroxy vitamin D (25(OH)D) and serum calcium levels among gender and age categories. METHODS: This cross-sectional study enrolled patients with BPPV. The diagnosis of BPPV was based on positional nystagmus and vertigo induced by certain head positions (The Dix-Hallpike maneuver and head roll tests). All patients' age, serum 25(OH)D, calcium measurements and recurrence data were collected and analyzed. RESULTS: The median of 25(OH)D was 15.32 (IQR 10.61, 20.90) ng/ml. The recurrent group showed lower 25(OH)D levels than that of non-recurrent group [13.28 (IQR 9.47, 17.57) ng/ml vs 16.21 (IQR 11.49, 21.13) ng/ml]. There were significant differences of 25(OH)D levels among age categories. The proportion of vitamin D deficiency in patients ≥60 years old was lower than that in the other two groups. CONCLUSION: Our study suggested that BPPV patients had a decreased 25(OH)D level and a high incidence of vitamin D deficiency. The 25(OH)D level of recurrent BPPV patients was lower than that in non-recurrent ones. Among them, the elderly group (≥60 years) took the preponderance, which had the lowest incidence of vitamin D deficiency and the highest incidence of vitamin D sufficiency.


Subject(s)
Benign Paroxysmal Positional Vertigo , Calcium , Recurrence , Vitamin D Deficiency , Vitamin D , Vitamin D/analogs & derivatives , Humans , Vitamin D Deficiency/complications , Vitamin D Deficiency/epidemiology , Cross-Sectional Studies , Male , Female , Middle Aged , Vitamin D/blood , Benign Paroxysmal Positional Vertigo/etiology , Benign Paroxysmal Positional Vertigo/epidemiology , Benign Paroxysmal Positional Vertigo/blood , Benign Paroxysmal Positional Vertigo/diagnosis , Aged , Adult , Calcium/blood , Age Factors , Sex Factors , Incidence
14.
Int J Biol Macromol ; 256(Pt 1): 128353, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000611

ABSTRACT

For specific recognition and sensitive detection of triglycerides (TGs), an optical fiber sensor (OFS) based on an enhanced core diameter mismatch was proposed. The sensitivity of the sensor is significantly increased due to the repetitive excitation of the higher-order cladding modes. A technique for immobilizing lipase using covalent binding technology was presented and demonstrated by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy. The interference dip of the sensor was shifted due to TGs being hydrolyzed in the presence of lipase. The sensor shows an optimal response within 3 min and exhibits a high sensitivity of 0.9933 nm/(mg/ml) and a limit of detection of 0.0822 mg/ml in the concentration range 0-8 mg/ml at a temperature of 37 °C and a pH of 7.4. The response of the sensor to TGs concentration at different temperatures and pH was investigated. The reproducibility, reusability, and stability of the proposed sensor were tested and verified experimentally. The biosensor is highly specific for TGs and unaffected by many other interfering substances. Further, the measurement of TGs concentration at different temperatures was realized. This method provides a new way to detect TGs rapidly and reliably and has potential applications in medical research and clinical diagnosis.


Subject(s)
Lipase , Optical Fibers , Triglycerides/chemistry , Temperature , Reproducibility of Results , Lipase/chemistry
15.
Blood Cells Mol Dis ; 104: 102793, 2024 01.
Article in English | MEDLINE | ID: mdl-37659255

ABSTRACT

BACKGROUND: Unrelated umbilical cord blood transplantation (UCBT) for bone marrow failure (BMF) disorders using conditioning regimens without Anti-Thymocyte Globulin (ATG) has been used as an alternative transplantation for emerging patients without matched-sibling donors. Experience with this transplant modality in children is limited, especially as a secondary treatment for transplant failure patients. PROCEDURE: We retrospectively reviewed 17 consecutive bone marrow failure patients who underwent unrelated umbilical cord blood transplantation in our center and received conditioning regimens of Total Body Irradiation (TBI) or Busulfan (BU) + Fludarabine (FLU) + Cyclophosphamide (CY). RESULTS: Among the 17 BMF patients, 15 patients were treated with first cord blood transplantation and another 2 with secondary cord blood transplantation because of graft failure after first haploidentical stem cell transplantation at days +38 and +82. All patients engrafted with a median donor cell chimerism of 50 % at days +7 (range, 16 %-99.95 %) and finally rose to 100 % at days +30. Median time to neutrophil engraftment was 19 days (range, 12-30) and time to platelet engraftment was 32 days (range, 18-61). Pre-engraftment syndrome (PES) was found in 16 patients (94.11 %, 16/17). Cumulative incidence of grades II to IV acute GVHD was 58.8 % (95 % CI: 32.7-84.9 %), and 17.6 % (95 % CI: 2.6-37.9 %) of patients developed chronic GVHD. The 3-year overall survival (OS) and failure-free survival (FFS) rates were 92.86 ± 6.88 %. CONCLUSION: UCBT is an effective alternative treatment for bone marrow failure pediatric patients. TBI/BU + FLU + CY regimen ensure a high engraftment rate for unrelated umbilical cord blood transplantation, which overcomes the difficulty of graft failure. Secondary salvage use of cord blood transplantation may still be useful for patients who have failed after other transplantation.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Child , Antilymphocyte Serum/therapeutic use , Fetal Blood , Retrospective Studies , Transplantation Conditioning , Graft vs Host Disease/etiology , Cyclophosphamide , Busulfan/therapeutic use , Bone Marrow Failure Disorders/therapy
16.
Foods ; 12(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38137234

ABSTRACT

In this study, the bighead carp (Aristichthys nobilis) was the object of research to compare and analyze the contents of conventional nutrients, amino acids, fatty acids, inosinic acid, and earthy-smelling compounds (geosmin and 2-methylisoborneol) in muscles of its dorsal, belly, tail, opercula, eye socket, and mandible in order to evaluate their quality. The findings could inform recommendations for the consumption and processing of different muscle parts of the bighead carp. The results showed that the water content in the abdominal muscle was significantly lower than that in other parts, and the crude fat content was significantly higher than that in other parts (p < 0.05, the same below). Seventeen kinds of amino acids were detected in the muscles of the six parts of the fish, and the dorsal muscles had the highest umami amino acids, essential amino acids and total amino acids, which were 6.45 g/100 g, 6.82 g/100 g and 17.26 g/100 g, respectively. The total amount of essential amino acids in the muscle was higher than that in the FAO/WHO standard model. According to the AAS standard, the first limiting amino acid in the muscle of the six parts was valine (Val). There were 26 kinds of fatty acids in the abdomen, under the gill cover and in the eye socket muscles, and the content of polyunsaturated fatty acids in the mandibular muscles was the highest (45.41%). The content of inosine in the dorsal muscle was significantly higher than that in other parts. Geosmin was the main substance in the muscle. There was no correlation between the distribution of earthy-smelling compounds and fat content, but the content of earthy-smelling compounds in the muscle of the belly and eye socket was the highest. Therefore, the muscle quality of different parts of the bighead carp has its own characteristics, and targeted development and utilization can make more efficient use of bighead carp resources.

17.
J Cancer ; 14(18): 3457-3476, 2023.
Article in English | MEDLINE | ID: mdl-38021154

ABSTRACT

Gastric cancer (GC) is one of the most prevalent cancers worldwide. Ferroptosis and the immune status of tumor tissue play vital roles in the initiation and progression of GC. However, the role and functional mechanisms of ferroptosis- and immunity-related genes (FIRGs) in GC pathogenesis and their correlations with GC prognosis have not been elucidated. We aim to establish a prognostic prediction model based on the FIRGs signature for GC patients. Differentially expressed genes were screened from the Cancer Genome Atlas (TCGA) GC cohorts. The least absolute shrinkage and selection operator (LASSO) regression was performed to establish a FIRGs-based risk model. This gene signature with 7 FIRGs was identified as an independent prognostic factor. A nomogram incorporating clinical parameters and the FIRG signature was constructed to individualize outcome predictions. Finally, we provided in vivo and in vitro evidence to verify the reliability of FIRG signature for GC prognosis, and validate the expression and function of FIRGs contributing to the development and progression of GC. Herein, our work represents great therapeutic and prognostic potentials for GC.

18.
Cell Death Dis ; 14(11): 728, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945598

ABSTRACT

Multiple tumors are synergistically promoted by c-Met and TRK, and blocking their cross-signalling pathway may give better effects. In this study, we developed a tyrosine kinase inhibitor 1D228, which exhibited excellent anti-tumor activity by targeting c-Met and TRK. Models in vitro, 1D228 showed a significant better inhibition on cancer cell proliferation and migration than the positive drug Tepotinib. Models in vivo, 1D228 showed robust anti-tumor effect on gastric and liver tumor growth with 94.8% and 93.4% of the TGI, respectively, comparing 67.61% and 63.9% of Tepotinib. Importantly, compared with the combination of Larotrectinib and Tepotinib, 1D228 monotherapy in MKN45 xenograft tumor models showed stronger antitumor activity and lower toxicity. Mechanistic studies showed that 1D228 can largely inhibit the phosphorylation of TRKB and c-Met. Interestingly, both kinases, TRKs and c-Met, have been found to be co-expressed at high levels in patients with gastric cancer through IHC. Furthermore, bioinformatics analysis has revealed that both genes are abnormally co-expressed in multiple types of cancer. Cell cycle analysis found that 1D228 induced G0/G1 arrest by inhibiting cyclin D1. Additionally, vascular endothelial cells also showed a pronounced response to 1D228 due to its expression of TRKB and c-Met. 1D228 suppressed the migration and tube formation of endothelial cells, which are the key functions of tumor angiogenesis. Taken together, compound 1D228 may be a promising candidate for the next generation of c-Met and TRK inhibitors for cancer treatment, and offers a novel potential treatment strategy for cancer patients with abnormal expressions of c-Met or NTRK, or simultaneous of them.


Subject(s)
Endothelial Cells , Liver Neoplasms , Humans , Cell Proliferation , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Liver Neoplasms/drug therapy , Cell Line, Tumor , Xenograft Model Antitumor Assays
19.
Cancers (Basel) ; 15(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38001607

ABSTRACT

The alcohol-averse drug disulfiram has been reported to have anti-tumor effects and is well suited for drug combinations. In order to identify potential drug combinations in esophageal squamous cell carcinoma (ESCC), we screened a bioactive compound library with the disulfiram copper chelation product CuET. The Jumonji domain-containing protein 3 (JMJD3) and the ubiquitously transcribed tetratricopeptide repeat protein X-linked (UTX) inhibitor GSK J4 were identified. To further understand the molecular mechanism underlying the efficient drug combination, we applied quantitative mass spectrometry to analyze the signaling pathway perturbation after drug treatment. The data revealed that the synergistic effect of GSK J4 and CuET was due to the interaction among JMJD3 and UTX, which may play important roles in maintaining endoplasmic reticulum (ER) homeostasis in tumor cells. Interestingly, our clinical data analysis showed that high expression of JMJD3 and UTX was associated with T stage and worse prognosis of ESCC patients, further supporting the importance of the above findings. In conclusion, our findings suggest that the combination of CuET and targeting JMJD3/UTX may be a safe, effective, and available treatment for ESCC.

20.
J Adv Res ; 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38008175

ABSTRACT

BACKGROUND: Mitochondria-derived peptides (MDPs) represent a recently discovered family of peptides encoded by short open reading frames (ORFs) found within mitochondrial genes. This group includes notable members including humanin (HN), mitochondrial ORF of the 12S rDNA type-c (MOTS-c), and small humanin-like peptides 1-6 (SHLP1-6). MDPs assume pivotal roles in the regulation of diverse cellular processes, encompassing apoptosis, inflammation, and oxidative stress, which are all essential for sustaining cellular viability and normal physiological functions. Their emerging significance extends beyond this, prompting a deeper exploration into their multifaceted roles and potential applications. AIM OF REVIEW: This review aims to comprehensively explore the biogenesis, various types, and diverse functions of MDPs. It seeks to elucidate the central roles and underlying mechanisms by which MDPs participate in the onset and development of cardiovascular diseases (CVDs), bridging the connections between cell apoptosis, inflammation, and oxidative stress. Furthermore, the review highlights recent advancements in clinical research related to the utilization of MDPs in CVD diagnosis and treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW: MDPs levels are diminished with aging and in the presence of CVDs, rendering them potential new indicators for the diagnosis of CVDs. Also, MDPs may represent a novel and promising strategy for CVD therapy. In this review, we delve into the biogenesis, various types, and diverse functions of MDPs. We aim to shed light on the pivotal roles and the underlying mechanisms through which MDPs contribute to the onset and advancement of CVDs connecting cell apoptosis, inflammation, and oxidative stress. We also provide insights into the current advancements in clinical research related to the utilization of MDPs in the treatment of CVDs. This review may provide valuable information with MDPs for CVD diagnosis and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...