Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Nanotechnol ; 19(2): 188-195, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37996516

ABSTRACT

Interactions among charge carriers in graphene can lead to the spontaneous breaking of multiple degeneracies. When increasing the number of graphene layers following rhombohedral stacking, the dominant role of Coulomb interactions becomes pronounced due to the significant reduction in kinetic energy. In this study, we employ phonon-polariton-assisted near-field infrared imaging to determine the stacking orders of tetralayer graphene devices. Through quantum transport measurements, we observe a range of spontaneous broken-symmetry states and their transitions, which can be finely tuned by carrier density n and electric displacement field D. Specifically, we observe a layer-antiferromagnetic insulator at n = D = 0 with a gap of approximately 15 meV. Increasing D allows for a continuous phase transition from a layer-antiferromagnetic insulator to a layer-polarized insulator. By simultaneously tuning n and D, we observe isospin-polarized metals, including spin-valley-polarized and spin-polarized metals. These transitions are associated with changes in the Fermi surface topology and are consistent with the Stoner criteria. Our findings highlight the efficient fabrication of specially stacked multilayer graphene devices and demonstrate that crystalline multilayer graphene is an ideal platform for investigating a wide range of broken symmetries driven by Coulomb interactions.

3.
Front Chem ; 11: 1253379, 2023.
Article in English | MEDLINE | ID: mdl-37593108

ABSTRACT

The fluorescence/magnetic resonance (FL/MR) dual-modal imaging could provide accurate tumor visualization to guide photothermal therapy (PTT) of cancer, which has attracted widespread attention from scientists. However, facile and effective strategies to synergistically enhance fluorescence intensity, MR contrast and photothermal efficacy have rarely been reported. This study presents a novel multifunctional probe Gd-EB-ICG (GI) for FL/MR dual-modal imaging-guided PTT of cancer. GIs can self-assemble with endogenous albumin to form drug-albumin complexes (GIAs), which exhibit excellent biocompatibility. Albumin can protect GIAs from the recognition and clearance by the mononuclear phagocytic system (MPS). High plasma concentration and long half-life allow GIAs to accumulate continuously in the tumor area through EPR effect and specific uptake of tumor. Because of the prolonged rotational correlation time (τR) of Gd chelates, GIAs exhibited superior MR contrast performance over GIs with more than 3 times enhancement of longitudinal relaxation efficiency (r1). The fluorescence quantum yield and photothermal conversion efficiency of GIAs was also significantly improved due to the constrained geometry, disrupted aggregation and enhanced photothermal stability. This simple and feasible strategy successfully resulted in a synergistic effect for FL/MR dual-modal imaging and photothermal therapy, which can cast a new light for the clinical translation of multifunctional probes.

4.
Molecules ; 28(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903466

ABSTRACT

The application of plant dyes in the textile industry has been very limited due to their limited sources, incomplete color space, and narrow color gamut, etc. Therefore, studies of the color properties and color gamut of natural dyes and the corresponding dyeing processes are essential for completing the color space of natural dyes and their application. In this study, water extract from the bark of Phellodendron amurense (P. amurense) was used as a dye. Dyeing properties, color gamut, and color evaluation of dyed cotton fabrics were studied, and optimal dyeing conditions were obtained. The results showed that the optimal dyeing process was pre-mordanting with liquor ratio at 1:50, P. amurense dye concentration at 5.2 g/L, mordant concentration (aluminum potassium sulfate) at 5 g/L, dyeing temperature at 70 °C, dyeing time of 30 min, mordanting time of 15 min, and pH 5. Through the optimization of the dyeing process, a maximum color gamut range was obtained with lightness L* value from 74.33 to 91.23, a* value from -0.89 to 2.96, b* value from 4.62 to 34.08, chroma C* value from 5.49 to 34.09, and hue angle h° value from 57.35° to 91.57°. Colors from light yellow to dark yellow were obtained, among which 12 colors were identified according to the Pantone Matching Systems. The color fastness against soap-washing, rubbing, and sunlight on the dyed cotton fabrics all reached grade 3 level or above, further expanding the applicability of natural dyes.

5.
J Phys Condens Matter ; 34(41)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35868294

ABSTRACT

Two-dimensional intrinsic antiferromagnetic semiconductors are expected to stand out in the spintronic field. The present work finds the monolayer T'-MoTeI is intrinsically an antiferromagnetic semiconductor by using first-principles calculation. Firstly, the dimerized distortion of the Mo atoms causes T'-MoTeI to have dynamic stability, which is different from the small imaginary frequency in the phonon spectrum of T-MoTeI. Secondly, T'-MoTeI is an indirect-bandgap semiconductor with 1.35 eV. Finally, in the systematic study of strain effects, there are significant changes in the electronic structure as well as the bandgap, but the antiferromagnetic ground state is not affected. Monte Carlo simulations predict that the Néel temperature of T'-MoTeI is 95 K. The results suggest that the monolayer T'-MoTeI can be a potential candidate for spintronics applications.

6.
J Phys Condens Matter ; 32(1): 015701, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31509817

ABSTRACT

Recently, two-dimensional ferromagnetic semiconductors have been an important class of materials for many potential applications in spintronic devices. Based on density functional theory, we systematically explore the magnetic and electronic properties of CrGeS3 with the monolayer structures. It is found that the bandgap of spin-up state is 1.01 eV when it is 1.07 eV in spin-down state. The exchange splitting is calculated as 0.67 eV (2.21 eV by HSE06 functional), which originates from bonding [Formula: see text] hybridized states of Cr e g -S p  and unoccupied Cr t 2g -Ge p  hybridization. After that, the comparison of total energy between different magnetic states ensures the ferromagnetic ground state of monolayer CrGeS3. The reason of the magnetic states originates mainly from the competition between antiferromagnetic direct neighboring Cr-Cr exchange and ferromagnetic superexchange mediated by S atom. And the results also show the magnetic moment of 6 [Formula: see text] per unit cell, including two Cr atoms. Besides, we estimate that the monolayer CrGeS3 possesses the Curie temperature of 161 K by mean-field theory. The results suggest that monolayer CrGeS3 crystals will possess potential applications in nanoscale spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...