Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(48): 17750-17758, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37971943

ABSTRACT

A new type of carbon dot (CD)-functionalized solution-gated graphene transistor (SGGT) sensor was designed and fabricated for the highly sensitive and highly selective detection of glutathione (GSH). The CDs were synthesized via a one-step hydrothermal method using DL-thioctic acid and triethylenetetramine (TETA) as sources of S, N, and C. The CDs have abundant amino and carboxyl groups and were used to modify the surface of the gate electrode of SGGT as probes for detecting GSH. Remarkably, the CDs-SGGT sensor exhibited excellent selectivity and ultrahigh sensitivity to GSH, with an ultralow limit of detection (LOD) of up to 10-19 M. To the best of our knowledge, the sensor outperforms previously reported systems. Moreover, the CDs-SGGT sensor shows rapid detection and good stability. More importantly, the detection of GSH in artificial serum samples was successfully demonstrated.


Subject(s)
Graphite , Quantum Dots , Carbon , Limit of Detection , Glutathione
2.
Adv Healthc Mater ; 12(25): e2300563, 2023 10.
Article in English | MEDLINE | ID: mdl-37377126

ABSTRACT

The persistent infection of high-risk-human papillomavirus type 16 (HPV16) is considered an essential element for suffering cervical cancer. Despite polymerase chain reaction, loop-mediated amplification, and microfluidic chips are used to detect the HPV16, these methods still exist some drawbacks including time-consuming and false positive results. The CRISPR-Cas system is widely used in the region of biological detection due to its precise targeted recognition capability. In this contribution, the novel solution-gated graphene transistor sensor is designed to realize the unamplified and label-free detection of HPV16 DNA. Using the precise recognition of the CRISPR-Cas12a system and the gate functionalization, HPV16 DNA can be precisely identified without need the amplification and labeling. The limit of detection of the sensor can be up to 8.3 × 10-18  m and the detection can be within 20 min. Additionally, the heat-Inactivated clinical samples can be clearly distinguished by the sensor the diagnosis results have a high degree of agreement with q-PCR detection.


Subject(s)
CRISPR-Cas Systems , Graphite , Humans , Human papillomavirus 16/genetics , DNA/genetics , Nucleic Acid Amplification Techniques
3.
Adv Sci (Weinh) ; 10(4): e2205886, 2023 02.
Article in English | MEDLINE | ID: mdl-36480308

ABSTRACT

The incidence of prostate cancer (PCa) in men globally increases as the standard of living improves. Blood serum biomarker prostate-specific antigen (PSA) detection is the gold standard assay that do not meet the requirements of early detection. Herein, a solution-gated graphene transistor (SGGT) biosensor for the ultrasensitive and rapid quantification detection of the early prostate cancer-relevant biomarker, miRNA-21 is reported. The designed single-stranded DNA (ssDNA) probes immobilized on the Au gate can hybridize effectively with the miRNA-21 molecules targets and induce the Dirac voltage shifts of SGGT transfer curves. The limit of detection (LOD) of the sensor can reach 10-20  M without amplification and any chemical or biological labeling. The detection linear range is from 10-20 to 10-12  M. The sensor can realize real-time detection of the miRNA-21 molecules in less than 5 min and can well distinguish one-mismatched miRNA-21 molecule. The blood serum samples from the patients without RNA extraction and amplification are measured. The results demonstrated that the biosensor can well distinguish the cancer patients from the control group and has higher sensitivity (100%) than PSA detection (58.3%). Contrastingly, it can be found that the PSA level is not directly related to PCa.


Subject(s)
Graphite , MicroRNAs , Prostatic Neoplasms , Male , Humans , Prostate-Specific Antigen/genetics , Graphite/chemistry , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Biomarkers, Tumor/genetics , DNA, Single-Stranded , MicroRNAs/genetics
4.
ACS Sens ; 7(12): 3923-3932, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36472865

ABSTRACT

The disease caused by severe acute respiratory syndrome coronavirus, SARS-CoV-2, is termed COVID-19. Even though COVID-19 has been out for more than two years, it is still causing a global pandemic. Due to the limitations of sample collection, transportation, and kit performance, the traditional reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method has a long detection period and high testing costs. An increased risk of infection is inevitable, since many patients may not be diagnosed in time. The CRISPR-Cas13a system can be designed for RNA identification and knockdown, as a promising platform for nucleic acid detection. Here, we designed a solution-gated graphene transistor (SGGT) biosensor based on the CRISPR-Cas13a system. Using the gene-targeting capacity of CRISPR-Cas13a and gate functionalization via multilayer modification, SARS-CoV-2 nucleic acid sequences can be quickly and precisely identified without the need for amplification or fluorescence tagging. The limit of detection (LOD) in both buffer and serum reached the aM level, and the reaction time was about 10 min. The results of the detection of COVID-19 clinical samples from throat swabs agree with RT-PCR. In addition, the interchangeable gates significantly minimize the cost and time of device fabrication. In a nutshell, our biosensor technology is broadly applicable and will be suitable for point-of-care (POC) testing.


Subject(s)
COVID-19 , Graphite , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/analysis , Clustered Regularly Interspaced Short Palindromic Repeats , Sensitivity and Specificity
5.
Nanotechnology ; 33(30)2022 May 04.
Article in English | MEDLINE | ID: mdl-35395655

ABSTRACT

The enhancement of photoluminescence (PL) emission and waveguide play a key role in improving the optical efficiency of luminescent solar concentrators (LSCs). In this work, to boosting PL emission and waveguide simultaneously, one photonic crystal (PC) structure (crystalline colloid arrays (CCAs)) was introduced into carbon dots (CDs)-based polymer LSCs. A sandwich-structured CDs-based polymer photonic LSC, comprising glass/CDs-based polymer PC film/glass, was created. First, CDs-based colloidal crystal suspensions were prepared by co-assembly of monodispersed p(MMA-NIPAm) colloids and multicolor-emitting CDs in HEMA monomer induced by the evaporation-driven assembly. The obtained suspensions not only had uniform PL and structural colors, but showed enhanced PL emission. Second, the above suspensions were sandwiched between two glass sheets and finally a photonic polymer LSC with sandwiched structure (25 × 25 × 1.8 mm3) were formed via one-step photopolymerization technique. Remarkably, the optimal CDs-based polymer photonic LSCs with sandwiched structure not only had high transparence at visible range (>60%), but exhibited PL emission enhancement (at least 2 times). Furthermore, the maximum external optical efficiency (ηopt) of 5.84% could be achieved based on yellow-emitting CDs-based polymer photonic LSC. The high external optical efficiency was mainly attributed to the PL emission enhancement and good PC waveguide.

6.
Anal Chem ; 94(7): 3320-3327, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35147418

ABSTRACT

Developing highly sensitive, reliable, cost-effective label-free DNA biosensors is challenging with traditional fluorescence, electrochemical, and other techniques. Most conventional methods require labeling fluorescence, enzymes, or other complex modification. Herein, we fabricate carbon quantum dot (CQD)-functionalized solution-gated graphene transistors for highly sensitive label-free DNA detection. The CQDs are immobilized on the surface of the gate electrode through mercaptoacetic acid with the thiol group. A single-stranded DNA (ssDNA) probe is immobilized on CQDs by strong π-π interactions. The ssDNA probe can hybridize with the ssDNA target and form double-stranded DNA, which led to a shift of Dirac voltage and the channel current response. The limit of detection can reach 1 aM which is 2-5 orders of magnitude lower than those of other methods reported previously. The sensor also exhibits a good linear range from 1 aM to 0.1 nM and has good specificity. It can effectively distinguish one-base mismatched target DNA. The response time is about 326 s for the 1 aM target DNA molecules. This work provides good perspectives on the applications in biosensors.


Subject(s)
Biosensing Techniques , Graphite , Quantum Dots , Biosensing Techniques/methods , Carbon/chemistry , DNA/genetics , DNA, Single-Stranded , Graphite/chemistry , Limit of Detection , Quantum Dots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...