Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Med ; 51(6)2023 06.
Article in English | MEDLINE | ID: mdl-37114562

ABSTRACT

Diabetic cardiomyopathy (DCM) is a cardiovascular disease which has been reported as a major cause of mortality worldwide for several years. Berberine (BBR) is a natural compound extracted from a Chinese herb, with a clinically reported anti­DCM effect; however, its molecular mechanisms have not yet been fully elucidated. The present study indicated that BBR markedly alleviated DCM by inhibiting IL­1ß secretion and the expression of gasdermin D (Gsdmd) at the post­transcriptional level. Considering the importance of microRNAs (miRNAs/miRs) in the regulation of the post­transcriptional process of specific genes, the ability of BBR to upregulate the expression levels of miR­18a­3p by activating its promoter (­1,000/­500) was examined. Notably, miR­18a­3p targeted Gsdmd and abated pyroptosis in high glucose­treated H9C2 cells. Moreover, miR­18a­3p overexpression inhibited Gsdmd expression and improved biomarkers of cardiac function in a rat model of DCM. On the whole, the findings of the present study indicate that BBR alleviates DCM by inhibiting miR­18a­3p­mediated Gsdmd activation; thus, BBR may be considered a potential therapeutic agent for the treatment of DCM.


Subject(s)
Berberine , Diabetes Mellitus , Diabetic Cardiomyopathies , MicroRNAs , Animals , Rats , Berberine/pharmacology , Berberine/therapeutic use , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Inflammasomes/metabolism , MicroRNAs/genetics , MicroRNAs/pharmacology , Pyroptosis
2.
Org Lett ; 25(10): 1737-1741, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36877585

ABSTRACT

We report on the synthesis of a cage-type calix[4]pyrrole (1) bearing an additional basic pyridinebisthiazolamine group on the strap. The receptor in its protonated form shows strong affinity and selectivity for sulfate over a wide range of inorganic anions. With receptor 1 as a liquid-liquid extractant, H+/SO42- in the form of H2SO4 is almost quantitatively extracted from an aqueous solution containing HNO3 at a high concentration to CH2Cl2 in a recyclable manner.

3.
Chem Commun (Camb) ; 56(65): 9364-9367, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32672309

ABSTRACT

A calix[4]pyrrole strapped by benzenebistriazole has been prepared as an artificial anion binding receptor. This neutral anion receptor shows high sulfate binding affinity and selectivity in an aqueous solution. In solid state, the receptor binds the sulfate anion in a chair-like 3D cavity via multiple N-H and C-H hydrogen bonds.

4.
Opt Express ; 28(2): 1561-1573, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-32121864

ABSTRACT

We propose a photonic spiking neural network (SNN) based on excitable vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSELs-SA) for emulating the sound azimuth detection function of the brain for the first time. Here, the spike encoding and response properties based on the excitability of VCSELs-SA are employed, and the difference between spike timings of two postsynaptic neurons serves as an indication of sound azimuth. Furthermore, the weight matrix contributing to the successful sound azimuth detection is carefully identified, and the effect of the time interval between two presynaptic spikes is considered. It is found that the weight range that can achieve sound azimuth detection decreases gradually with the increase of the time interval between the sound arriving at the left and right ears. Besides, the effective detection range of the time interval between two presynaptic spikes is also identified, which is similar to that of the biological auditory system, but with a much higher resolution which is at the nanosecond time scale. We further discuss the effect of device variations on the photonic sound azimuth detection. Hence, this photonic SNN is biologically plausible, which has comparable low energy consumption and higher resolution compared with the biological system. This work is valuable for brain-inspired information processing and a promising foundation for more complex spiking information processing implemented by photonic neuromorphic computing systems.


Subject(s)
Lasers , Neural Networks, Computer , Photons , Sound , Surface Properties
5.
Int J Mol Sci ; 19(3)2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29495545

ABSTRACT

Hepatic fibrosis is the main pathological basis for chronic cirrhosis, and activated hepatic stellate cells (HSCs) are the primary cells involved in liver fibrosis. Our study analyzed anti-fibrosis long noncoding RNAs (lncRNAs) in activated human HSCs (hHSCs). We performed RNA sequencing (RNA-seq) and bioinformatics analysis to determine whether lncRNA expression profile changes between hHSCs activation and quiescence. Eight differentially expressed (DE) lncRNAs and three pairs of co-expression lncRNAs-mRNAs were verified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). A total of 34146 DE lncRNAs were identified in this study. Via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we found several DE lncRNAs regulated hHSC activation by participating in DNA bending/packaging complex, growth factor binding and the Hippo signaling pathway (p < 0.05). With lncRNA-mRNA co-expression analysis, three lncRNAs were identified to be associated with connective tissue growth factor (CTGF), fibroblast growth factor 2 (FGF2) and netrin-4 (NTN4). The quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results of the eight DE lncRNAs and three pairs of co-expression lncRNAs-mRNAs were consistent with the RNA-seq data and previous reports. Several lncRNAs may serve as potential targets to reverse the progression of liver fibrosis. This study provides a first insight into lncRNA expression profile changes associated with activated human HSCs.


Subject(s)
Hepatic Stellate Cells/metabolism , Liver Cirrhosis/genetics , RNA, Long Noncoding/genetics , Transcriptome , Biomarkers , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Gene Regulatory Networks , Hepatic Stellate Cells/drug effects , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Phenotype , RNA Interference , RNA, Messenger/genetics , Reproducibility of Results , Sequence Analysis, RNA , Valproic Acid/analogs & derivatives , Valproic Acid/pharmacology
6.
PLoS One ; 10(3): e0118204, 2015.
Article in English | MEDLINE | ID: mdl-25768014

ABSTRACT

Rhodiola spp. are rare and endangered alpine plants widely used as medicines and food additives by many civilizations since ancient times. Their main effective ingredients (such as salidroside and p-tyrosol) are praised to exhibit pharmacologic effects on high-altitude sickness and possess anti-aging and other adaptogenic capacities based on their antioxidant properties. In this study, 347 endophytic fungi were isolated from R. crenulata, R. angusta, and R. sachalinensis, and the molecular diversity and antioxidant activities of these fungi were investigated for the first time. These fungi were categorized into 180 morphotypes based on cultural characteristics, and their rRNA gene ITS sequences were analyzed by BLAST search in the GenBank database. Except for 12 unidentified fungi (6.67%), all others were affiliated to at least 57 genera in 20 orders of four phyla, namely, Ascomycota (88.89%), Basidiomycota (2.78%), Zygomycota (1.11%), and Glomeromycota (0.56%), which exhibited high abundance and diversity. Antioxidant assay showed that the DPPH radical-scavenging rates of 114 isolates (63.33%) were >50%, and those of five isolates (Rct45, Rct63, Rct64, Rac76, and Rsc57) were >90%. The EC50 values of five antioxidant assays suggested significant potential of these fungi on scavenging DPPH•, O2-•, and OH• radicals, as well as scavenging nitrite and chelating Fe2+, which showed preference and selection between endophytic fungi and their hosts. Further research also provided the first evidence that Rac12 could produce salidrosides and p-tyrosol. Results suggested that versatile endophytic fungi associated with Rhodiola known as antioxidants could be exploited as potential sources of novel antioxidant products.


Subject(s)
Antioxidants/metabolism , Antioxidants/pharmacology , Fungi/metabolism , Rhodiola/microbiology , Biodiversity , Glucosides/metabolism , Phenols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...