Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Phytopathology ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723196

ABSTRACT

Stripe rust and powdery mildew are serious diseases that severely decrease the yield of wheat. Planting wheat cultivars with powdery mildew and stripe rust resistance genes is the most effective way to control these two diseases. Introducing disease-resistance genes from related species into the wheat genome via chromosome translocation is an important way to improve wheat disease resistance. In this study, nine novel T1RS.1AL translocation lines were developed from the cross of wheat cultivar Chuannong25 (CN25) and a Chinese rye Qinling. The results of non-denaturing fluorescence in situ hybridization (ND-FISH) and PCR showed that all new lines were homozygous for the T1RS.1AL translocation. These new T1RS.1AL translocation lines exhibited strong resistance to stripe rust and powdery mildew. The cytogenetics results indicated that the resistance of the new lines was conferred by the 1RS chromosome arms, which came from Qinling rye. The genetic analysis indicated that there were new dominant resistance genes on the 1RS chromosome arm resistant to stripe rust and powdery mildew, and their resistance patterns were different from Yr9, Pm8, and Pm17 genes. In addition, the T1RS.1AL translocation lines generally exhibited better agronomic traits in the field relative to CN25. These T1RS.1AL translocations have great potential in wheat-breeding programs in the future.

2.
Front Plant Sci ; 13: 992016, 2022.
Article in English | MEDLINE | ID: mdl-36061779

ABSTRACT

Stripe rust and powdery mildew are devastating diseases that have severe effects on wheat production. Introducing resistant genes/loci from wheat-related species into the wheat genome is an important method to improve wheat resistance. Rye (Secale cereale L.) is a cross-pollinating plant and is the most important related species for wheat genetic improvement. In this study, we developed three 6RS ditelosomic addition lines, three 6RL ditelosomic addition lines, and two 6R disomic addition lines by crossing common wheat cultivar Chuannong 25 and rye inbred line QL2. The chromosome composition of all new lines was confirmed by non-denaturing fluorescence in situ hybridization (ND-FISH) and molecular marker analyses. Disease responses to different Puccinia striiformis f. sp. tritici (Pst) races and Blumeria graminis f. sp. tritici (Bgt) isolates and cytogenetic analysis showed that the resistance of the new lines was derived from the rye chromosome 6R of QL2, and both arms (6RS and 6RL) may harbor resistance genes against Pst and Bgt. These new lines could be used as a promising bridging parent and valuable genetic resource for wheat disease resistance improvement.

3.
Theor Appl Genet ; 135(12): 4183-4195, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36068440

ABSTRACT

KEY MESSAGE: A major and stable QTL cQSGR.sau.3D, which can explain 33.25% of the phenotypic variation in SGR, was mapped and validated, and cQSGR.sau.3D was found to be independent of GI. In this study, a recombinant inbred line (RIL) population containing 304 lines derived from the cross of Chuan-nong17 (CN17) and Chuan-nong11 (CN11) was genotyped using the Wheat55K single-nucleotide polymorphism array. A high-density genetic map consisting of 8329 markers spanning 4131.54 cM and distributed across 21 wheat chromosomes was constructed. QTLs for whole spike germination rate (SGR) were identified in multiple years. Six and fourteen QTLs were identified using the Inclusive Composite Interval Mapping-Biparental Populations and Multi-Environment Trial methods, respectively. A total of 106 digenic epistatic QTLs were also detected in this study. One of the additive QTLs, cQSGR.sau.3D, which was mapped in the region from 3.5 to 4.5 cM from linkage group 3D-2 on chromosome 3D, can explain 33.25% of the phenotypic variation in SGR and be considered a major and stable QTL for SGR. This QTL was independent of the seeds' germination traits, such as germination index. One Kompetitive Allele-Specific PCR (KASP) marker, KASP-AX-110772653, which is tightly linked to cQSGR.sau.3D, was developed. The genetic effect of cQSGR.sau.3D on SGR in the RIL and natural populations was successfully confirmed. Furthermore, within the interval in which cQSGR.sau.3D is located in Chinese Spring reference genomes, thirty-seven genes were found. cQSGR.sau.3D may provide new resources for pre-harvest sprouting resistance breeding of wheat in the future.


Subject(s)
Quantitative Trait Loci , Triticum , Triticum/genetics , Chromosome Mapping , Genotype , Plant Breeding , Phenotype , Polymorphism, Single Nucleotide
4.
Int J Mol Sci ; 23(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36142406

ABSTRACT

In this study, a novel T6RS.6AL translocation line, 117-6, was selected from a cross between common Chuannong25 (CN25) wheat and Qinling rye. The results of nondenaturing fluorescence in situ hybridization (ND-FISH) and PCR showed that 117-6 contained two T6RS.6AL translocation chromosomes. The distal region of the 6RS chromosome in 117-6 was mutant and showed different FISH signal patterns. When inoculated with different stripe rust races and powdery mildew races in seedlings, 117-6 expressed high resistance to them. The 117-6 line also exhibited high resistance to stripe rust and powdery mildew in the field under natural Puccinia striiformis f. sp. tritici (Pst) and Blumeria graminis f. sp. tritici (Bgt) infection. The cytogenetic analysis indicated that the introduction of 6RS conferred resistance ability. Compared with wheat parent CN25, 117-6 exhibited excellent agronomic traits in the field. The present study indicated that Qinling rye may carry favorite genes as a potential source for wheat genetic improvement, and 117-6 could be a useful germplasm for wheat breeding programs in the future.


Subject(s)
Basidiomycota , Secale , Basidiomycota/genetics , Chromosomes, Plant/genetics , Cytogenetic Analysis , Disease Resistance/genetics , Erysiphe , In Situ Hybridization, Fluorescence , Plant Breeding , Plant Diseases/genetics , Secale/genetics , Translocation, Genetic , Triticum/genetics
5.
Int J Mol Sci ; 23(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35563016

ABSTRACT

In this study, a novel T1RS.1BL translocation line RT843-5 was selected from a cross between wheat Mianyang11 (MY11) and Weining rye. The results of MC-FISH, PCR, and A-PAGE showed that RT843-5 contained two intact T1RS.1BL translocation chromosomes. RT843-5 showed resistance to the most virulent and frequently occurring stripe rust races/isolates. Additionally, RT843-5 showed resistance in the field in locations where stripe rust outbreaks have been the most severe in China. Genetic analysis indicated one new gene for stripe rust resistance, located on 1RS of RT843-5, which was tentatively named YrRt843. Furthermore, the chlorophyll content, the activities of catalase (CAT), and superoxide dismutase (SOD), and the net photosynthetic rate (Pn) of RT843-5 were significantly higher than those in its wheat parent MY11, whereas malondialdehyde (MDA) accumulation was significantly lower after anthesis in RT843-5 compared to in MY11. RT843-5 had a significantly higher 1000-kernel weight and yield than MY11. The results indicated that RT843-5 exhibited functional stay-green traits after anthesis, that delayed the senescence process in wheat leaves during the filling stage and had positive effects on grain yield. The present study indicated that Weining rye may carry untapped variations as a potential source of resistance, and that RT843-5 could be an important material for wheat breeding programs in the future.


Subject(s)
Basidiomycota , Secale , Basidiomycota/genetics , Chromosomes, Plant/genetics , Cytogenetic Analysis , Disease Resistance/genetics , Edible Grain/genetics , Plant Breeding , Plant Diseases/genetics , Secale/genetics , Translocation, Genetic , Triticum/genetics
6.
Int J Mol Sci ; 23(5)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35269872

ABSTRACT

Rye is the most important source for the genetic improvement of wheat. In this study, two stable wheat-rye primary 1RS.1BL translocation lines, RT855-13 and RT855-14, were selected and identified by acid polyacrylamide gel electrophoresis (A-PAGE), co-dominant PCR, and multi-color fluorescence in situ hybridization (MC-FISH) from the progeny of the crossing of the wheat cultivar Mianyang11 and a Chinese rye Weining. When more than two independent, simple reciprocal translocations are involved in a carrier, they are defined as complex chromosome translocations (CCT). The MC-FISH results also indicated that CCT occurred in RT855-13; namely that, besides 1RS.1BL translocation chromosomes, there are other two pairs of balanced reciprocal translocations. It was demonstrated that the interchange between a distal segment of 4B and long arm of 3D occurred in the RT855-13. The novel translocation chromosomes in wheat were recorded as 3DS.4BSDS and 3DL-4BSPS.4BL. Reports about CCT as a genetic resource in plant breeding programs are scarce. Both lines expressed high resistance to Puccinia striiformis f. sp. tritici, which are prevalent in China and are virulent on Yr9, and the CCT line RT855-13 retained better resistance as adult plants compared with RT855-14 in the field. Both lines, especially the CCT line RT855-13, exhibited better agronomic traits than their wheat parent, Mianyang11, indicating that both translocation lines could potentially be used for wheat improvement. The results also indicated that the position effects of CCT can lead to beneficial variations in agronomic and resistant traits, making them a valuable genetic resource to wheat breeding programs.


Subject(s)
Basidiomycota , Triticum , Basidiomycota/genetics , Chromosomes, Plant/genetics , Disease Resistance/genetics , In Situ Hybridization, Fluorescence , Plant Breeding , Plant Diseases/genetics , Secale/genetics , Translocation, Genetic , Triticum/genetics
7.
Theor Appl Genet ; 135(4): 1429-1441, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35138422

ABSTRACT

KEY MESSAGE: This study identified QTLs associated with the functional stay green trait by a high-density genetic map. Two large effect QTLs, QSg.sau-2B.1 and QSg.sau-6A.2, were identified in multiple years and one of them was successfully validated. The functional stay green phenotype enables wheat to acclimate to stressful environments and prolongs the effectiveness of photosynthesis during the end-of-crop season. Despite the fact that stay green mutants in wheat have been reported, our knowledge of loci for the functional stay green trait remains limited. In this study, an RIL population containing 371 lines genotyped using the Wheat55K SNP array was used to map QTLs controlling the functional stay green trait in multiple years. In total, 21 and 19 QTLs were mapped using the BIP or MET modules of the ICIM method, respectively. Among them, two QTLs, QSg.sau-2B.1 and QSg.sau-6A.2, were considered large effect QTLs for the stay green trait and explained 11.43% and 15.27% of phenotypic variation on average, respectively. Two KASP markers were developed and tightly linked to QSg.sau-2B.1 and QSg.sau-6A.2, respectively, and the genetic effects of different genotypes in the RIL population were successfully confirmed. QSg.sau-2B.1 was also validated by linked KASP marker in different genetic backgrounds. QSg.sau-2B.1 and QSg.sau-6A.2 may influence heredity of the stay green trait and also exhibited a positive effect on the grain filling content. In the interval where QSg.sau-2B.1 and QSg.sau-6A.2 were located on the Chinese Spring and T. turgidum ssp. dicoccoides reference genomes, several genes associated with the leaf senescence process were identified. Altogether, our results identified two QTLs associated with the functional stay green trait and will be useful for the fine mapping and cloning of genes for stay green in the future.


Subject(s)
Quantitative Trait Loci , Triticum , Chromosome Mapping , Genotype , Phenotype , Triticum/genetics
8.
Phytopathology ; 112(6): 1310-1315, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34982573

ABSTRACT

Wheat-rye 1RS·1BL translocations from 'Petkus' rye have contributed substantially to wheat production worldwide with their great disease resistance and yield traits. However, the resistance genes on the 1RS chromosomes have completely lost their resistance to newly emerged pathogens. Rye could widen the variation of 1RS as a naturally cross-pollinated related species of wheat. In this study, we developed three new 1RS·1BL translocation lines by crossing rye inbred line BL1, selected from Chinese landrace rye Baili, with wheat cultivar Mianyang11. These three new translocation lines exhibited high resistance to the most virulent and frequently occurring stripe rust pathotypes and showed high resistance in the field, where stripe rust outbreaks have been most severe in China. One new gene for stripe rust resistance, located on 1RS of the new translocation lines, is tentatively named YrRt1054. YrRt1054 confers resistance to Puccinia striiformis f. sp. tritici pathotypes that are virulent toward Yr9 and YrCn17. This new resistance gene, YrRt1054, is available for wheat improvement programs. The present study indicated that rye cultivars may carry additional untapped variation as potential sources of resistance.


Subject(s)
Basidiomycota , Triticum , Basidiomycota/genetics , Chromosomes, Plant , Disease Resistance/genetics , In Situ Hybridization, Fluorescence , Plant Diseases/genetics , Puccinia , Secale/genetics , Translocation, Genetic , Triticum/genetics
9.
Plant Dis ; 106(8): 2191-2200, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35077221

ABSTRACT

Stripe rust (caused by Puccinia striiformis f. sp. tritici) is one of the most severe diseases for wheat production. An important method to improve the stripe rust resistance of wheat is to introduce resistance genes from related species into the wheat genome. The 1RS.1BL wheat-rye translocation from Petkus rye has contributed substantially to wheat resistance breeding worldwide. However, given the breakdown of the stripe rust resistance gene Yr9 in 1RS, its importance for wheat improvement has decreased. In this study, we developed 166 new primary 1RS.1BL translocation lines by crossing rye varieties Weining, Baili, and Aigan with several wheat cultivars. Cytogenetic and molecular analyses indicated that all of these lines contained a pair of intact 1RS.1BL translocation chromosomes. The stripe rust resistance of these translocation lines and their wheat parents was evaluated in southwestern China during the severe stripe rust epidemics in 2015 and 2021. The results showed diverse effects of the 1RS.1BL translocations from different rye cultivars on resistance to stripe rust. The highest genetic diversity was observed in 1RS.1BL translocations derived from diverse rye varieties but in the same wheat background. The development of diverse 1RS.1BL translocation lines offers ample opportunities to introduce new variations into wheat for improving stripe rust resistance. Finally, 71 new translocation lines, including nine developed from the cross of MY11 × Aigan, four from MY11 × Baili, 40 from MY11 × Weining, 14 from A42912 × Baili, and four from A42912 × Weining. These lines showed consistent resistance to stripe rust in fields under frequent changes of the pathogen races and could be useful genetic stocks for breeding wheat cultivars with resistance to stripe rust.


Subject(s)
Basidiomycota , Triticum , Basidiomycota/genetics , Chromosomes, Plant/genetics , In Situ Hybridization, Fluorescence , Plant Breeding , Secale/genetics , Translocation, Genetic , Triticum/genetics
10.
Front Plant Sci ; 12: 713890, 2021.
Article in English | MEDLINE | ID: mdl-34484276

ABSTRACT

As an important component, 1,000 kernel weight (TKW) plays a significant role in the formation of yield traits of wheat. Kernel size is significantly positively correlated to TKW. Although numerous loci for kernel size in wheat have been reported, our knowledge on loci for kernel area (KA) and kernel circumference (KC) remains limited. In the present study, a recombinant inbred lines (RIL) population containing 371 lines genotyped using the Wheat55K SNP array was used to map quantitative trait loci (QTLs) controlling the KA and KC in multiple environments. A total of 54 and 44 QTLs were mapped by using the biparental population or multienvironment trial module of the inclusive composite interval mapping method, respectively. Twenty-two QTLs were considered major QTLs. BLAST analysis showed that major and stable QTLs QKc.sau-6A.1 (23.12-31.64 cM on 6A) for KC and QKa.sau-6A.2 (66.00-66.57 cM on 6A) for KA were likely novel QTLs, which explained 22.25 and 20.34% of the phenotypic variation on average in the 3 year experiments, respectively. Two Kompetitive allele-specific PCR (KASP) markers, KASP-AX-109894590 and KASP-AX-109380327, were developed and tightly linked to QKc.sau-6A.1 and QKa.sau-6A.2, respectively, and the genetic effects of the different genotypes in the RIL population were successfully confirmed. Furthermore, in the interval where QKa.sau-6A.2 was located on Chinese Spring and T. Turgidum ssp. dicoccoides reference genomes, only 11 genes were found. In addition, digenic epistatic QTLs also showed a significant influence on KC and KA. Altogether, the results revealed the genetic basis of KA and KC and will be useful for the marker-assisted selection of lines with different kernel sizes, laying the foundation for the fine mapping and cloning of the gene(s) underlying the stable QTLs detected in this study.

11.
Nat Genet ; 53(4): 574-584, 2021 04.
Article in English | MEDLINE | ID: mdl-33737755

ABSTRACT

Rye is a valuable food and forage crop, an important genetic resource for wheat and triticale improvement and an indispensable material for efficient comparative genomic studies in grasses. Here, we sequenced the genome of Weining rye, an elite Chinese rye variety. The assembled contigs (7.74 Gb) accounted for 98.47% of the estimated genome size (7.86 Gb), with 93.67% of the contigs (7.25 Gb) assigned to seven chromosomes. Repetitive elements constituted 90.31% of the assembled genome. Compared to previously sequenced Triticeae genomes, Daniela, Sumaya and Sumana retrotransposons showed strong expansion in rye. Further analyses of the Weining assembly shed new light on genome-wide gene duplications and their impact on starch biosynthesis genes, physical organization of complex prolamin loci, gene expression features underlying early heading trait and putative domestication-associated chromosomal regions and loci in rye. This genome sequence promises to accelerate genomic and breeding studies in rye and related cereal crops.


Subject(s)
Contig Mapping/methods , Crops, Agricultural/genetics , Genome, Plant , Plant Proteins/genetics , Quantitative Trait, Heritable , Secale/genetics , Gene Duplication , Gene Expression Regulation, Plant , Genetic Loci , Genome Size , High-Throughput Nucleotide Sequencing , Plant Breeding , Plant Proteins/metabolism , Retroelements , Starch/biosynthesis , Triticum/genetics
13.
Theor Appl Genet ; 134(3): 807-821, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33388883

ABSTRACT

KEY MESSAGE: This study mapped QTLs associated with kernel-related traits by high-density genetic map. Five new major and stable QTLs for KL, KDR, SN, and KWPS were mapped in multiple environments. In the present study, a recombinant inbred line population including 371 lines derived from the cross of Chuannong18 and T1208 was genotyped using the Wheat55K single nucleotide polymorphism array. A novel high-density genetic map consisting of 11,583 markers spanning 4192.62 cM and distributed across 21 wheat chromosomes was constructed. QTLs for important kernel-related traits were mapped in multiple environments. A total of 96 and 151 QTLs were mapped by using the ICIM method and the MET method, respectively. And a total of 114 digenic epistatic QTLs were also detected across 21 chromosomes, and the epistatic effects of each trait were analyzed. BLAST analysis showed that 23 QTLs for different kernel-related traits were first time mapped and five of them were major and stable QTLs for kernel diameter ratio (121.34-126.83 cM on 4BS), spike number per square meter (71.32-73.84 cM on 2DS), kernel weight per spike (71.32-75.26 cM on 2DS), and kernel length (16.78-31.64 cM on 6A and 51.63-58.40 cM on 3D), respectively. Fifteen QTL clusters that contained 58 QTLs were also detected, and all most stable QTLs were contained in these QTL clusters. Significant correlations between different traits were detected and discussed. These results lay the foundation for fine mapping and cloning of the gene(s) underlying the stable QTLs detected in this study.


Subject(s)
Chromosomes, Plant/genetics , Genetic Markers , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Seeds/genetics , Triticum/genetics , Chromosome Mapping , Genetic Linkage , Genotype , Phenotype , Seeds/growth & development , Triticum/growth & development
14.
Phytopathology ; 110(10): 1713-1720, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32460689

ABSTRACT

Secale cereale is used as a source of genes for disease resistance in wheat cultivation. In this study, a homozygous translocation line (RT14-245) that originated from a cross between a commercial wheat cultivar (Mianyang 11) and a local Chinese variety of rye (Baili) was developed. Multicolor fluorescence in situ hybridization and PCR analysis demonstrated that the translocation chromosome was 7BS.7RL. Resistance analysis showed that RT14-245 was resistant to prevalent pathotypes of stripe rust and powdery mildew. RT14-245 also exhibited high resistance to Fusarium head blight, which was similar to the resistance exhibited by the wheat cultivar Sumai 3. The results indicated that RT14-245 simultaneously exhibited high levels of resistance against stripe rust, powdery mildew, and Fusarium head blight. These results indicate that chromosome arm 7RL in the translocation line RT14-245 is an excellent new resource for wheat breeding programs.


Subject(s)
Fusarium , Secale/genetics , Chromosomes, Plant/genetics , Disease Resistance/genetics , Humans , In Situ Hybridization, Fluorescence , Plant Diseases , Triticum/genetics
15.
Molecules ; 24(6)2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30901897

ABSTRACT

Non-denaturing fluorescence in situ hybridization (ND-FISH) has been used to distinguish wheat chromosomes and to detect alien chromosomes in the wheat genome. In this study, five different oligonucleotide probes were used with ND-FISH to examine 21 wheat cultivars and lines. These oligonucleotide probes distinguished 42 wheat chromosomes and also detected rye chromatin in the wheat genome. Moreover, the signal patterns of the oligonucleotide probes Oligo-pTa535-1 and Oligo-pSc119.2-1 showed high polymorphism in the wheat chromosomes. A total of 17.6% of the A group chromosomes, 25.9% of the B group chromosomes and 8.9% of the D group chromosomes showed obvious mutations when they were compared to the standard ND-FISH signal patterns, and most of them were Oligo-pSc119.2-1 mutants. The results suggested that these polymorphisms could be induced by the crossing of wheat cultivars. The results provided more information for the further application of oligonucleotide probes and ND-FISH.


Subject(s)
In Situ Hybridization, Fluorescence , Oligonucleotide Probes , Polymorphism, Genetic , Triticum/genetics , Chromosomes, Plant , Genome, Plant , Mutation
16.
Autophagy ; 14(9): 1543-1561, 2018.
Article in English | MEDLINE | ID: mdl-29929416

ABSTRACT

Autophagy is essential for appressorium-mediated plant infection by Magnaporthe oryzae, the causal agent of rice blast disease and a major threat to global food security. The regulatory mechanism of pathogenicity-associated autophagy, however, remains largely unknown. Here, we report the identification and functional characterization of a plausible ortholog of yeast SNT2 in M. oryzae, which we term MoSNT2. Deletion mutants of MoSNT2 are compromised in autophagy homeostasis and display severe defects in autophagy-dependent fungal cell death and pathogenicity. These mutants are also impaired in infection structure development, conidiation, oxidative stress tolerance and cell wall integrity. MoSnt2 recognizes histone H3 acetylation through its PHD1 domain and thereby recruits the histone deacetylase complex, resulting in deacetylation of H3. MoSnt2 binds to promoters of autophagy genes MoATG6, 15, 16, and 22 to regulate their expression. In addition, MoTor controls MoSNT2 expression to regulate MoTor signaling which leads to autophagy and rice infection. Our study provides evidence of a direct link between MoSnt2 and MoTor signaling and defines a novel epigenetic mechanism by which MoSNT2 regulates infection-associated autophagy and plant infection by the rice blast fungus. ABBREVIATIONS: M. oryzae: Magnaporthe oryzae; S. cerevisiae: Saccharomyces cerevisiae; F. oxysporum: Fusarium oxysporum; U. maydis: Ustilago maydis; Compl.: complemented strains of ΔMosnt2 expressing MoSNT2-GFP; ATG: autophagy-related; HDAC: histone deacetylase complex; Tor: target of rapamycin kinase; MTOR: mechanistic target of rapamycin kinase in mammals; MoSnt2: DNA binding SaNT domain protein in M. oryzae; MoTor: target of rapamycin kinase in M. oryzae; MoAtg8: autophagy-related protein 8 in M. oryzae; MoHos2: hda one similar protein in M. oryzae; MoeIf4G: eukaryotic translation initiation factor 4 G in M. oryzae; MoRs2: ribosomal protein S2 in M. oryzae; MoRs3: ribosomal protein S3 in M. oryzae; MoIcl1: isocitrate lyase in M. oryzae; MoSet1: histone H3K4 methyltransferase in M. oryzae; Asd4: ascus development 4; Abl1: AMP-activated protein kinase ß subunit-like protein; Tig1: TBL1-like gene required for invasive growth; Rpd3: reduced potassium dependency; KAT8: lysine (K) acetyltransferase 8; PHD: plant homeodomain; ELM2: Egl-27 and MTA1 homology 2; GFP: green fluorescent protein; YFP: yellow fluorescent protein; YFPCTF: C-terminal fragment of YFP; YFPNTF: N-terminal fragment of YFP; GST: glutathione S-transferase; bp: base pairs; DEGs: differentially expressed genes; CM: complete medium; MM-N: minimum medium minus nitrogen; CFW: calcofluor white; CR: congo red; DAPI: 4', 6-diamidino-2-phenylindole; BiFC: bimolecular fluorescence complementation; RT: reverse transcription; PCR: polymerase chain reaction; qPCR: quantitative polymerase chain reaction; RNAi: RNA interference; ChIP: chromatin immunoprecipitation.


Subject(s)
Autophagy , Fungal Proteins/metabolism , Histones/metabolism , Magnaporthe/pathogenicity , Oryza/microbiology , Plant Diseases/microbiology , Acetylation , Autophagy/drug effects , Autophagy/genetics , Cell Wall/drug effects , Cell Wall/metabolism , Epigenesis, Genetic/drug effects , Fungal Proteins/genetics , Gene Deletion , Gene Expression Regulation, Fungal/drug effects , Histone Deacetylases/metabolism , Magnaporthe/drug effects , Magnaporthe/genetics , Magnaporthe/growth & development , Models, Biological , Oxidative Stress/drug effects , Oxidative Stress/genetics , Protein Binding/drug effects , Signal Transduction/drug effects , Sirolimus/pharmacology
17.
Front Plant Sci ; 9: 333, 2018.
Article in English | MEDLINE | ID: mdl-29599793

ABSTRACT

Maximum tiller number and productive tiller number are important traits for wheat grain yield, but research involving the temporal expression of tiller number at different quantitative trait loci (QTL) levels is limited. In the present study, a population set of 371 recombined inbred lines derived from a cross between Chuan-Nong18 and T1208 was used to construct a high-density genetic map using a Wheat55K SNP Array and to perform dynamic QTL analysis of the tiller number at four growth stages. A high-density genetic map containing 11,583 SNP markers and 59 SSR markers that spanned 4,513.95 cM and was distributed across 21 wheat chromosomes was constructed. A total of 28 single environmental QTL were identified in the recombined inbred lines population, and among these, seven QTL were stable and used for multi-environmental and dynamic analysis. These QTL were mapped to chromosomes 2D, 4A, 4D, 5A, 5D, and 7D, respectively. Each QTL explained 1.63-21.22% of the observed phenotypic variation, with an additive effect from -20.51 to 11.59. Dynamic analysis showed that cqTN-2D.2 can be detected at four growth stages of tillering, explaining 4.92-17.16% of the observed phenotypic variations and spanning 13.71 Mb (AX-109283238-AX-110544009: 82189047-95895626) according to the physical location of the flanking markers. The effects of the stable QTL were validated in the recombined inbred lines population, and the beneficial alleles could be utilized in future marker-assisted selection. Several candidate genes for MTN and PTN were predicted. The results provide a better understanding of the QTL selectively expressing the control of tiller number and will facilitate future map-based cloning. 9.17% SNP markers showed best hits to the Chinese Spring contigs. It was indicated that Wheat55K Array was efficient and valid to construct a high-density wheat genetic map.

18.
Gene ; 634: 15-21, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28867565

ABSTRACT

Spike formation rate (SR), which is based on maximum tiller number per unit area and spike number per unit area, is an important yield-related trait in wheat. Increasing the spike formation rate reduces growth competition and wastage of photosynthate from ineffective tillers. Unfortunately, research studies involving quantitative trait locus (QTL) mapping for wheat spike formation rate are limited. In the present study, a set of 371 recombinant inbreed line (RIL) population, which were derived from 1BL/LRS wheat-rye translocation lines CN18 and T1208, was analysed by simple sequence repeat (SSR) markers. Genetic analysis showed that a stable and major QTL (QSR.sicau-4D) for spike formation rate was localized to chromosome 4D and explained 18.24% and 24.48% of the observed phenotypic variance in 2015 and 2016, respectively. This QTL was closely linked to SSR marker Xcfd23, and the genetic distance between the flank markers was 3.28cM. Furthermore, QSR.sicau-4D might be a novel pleiotropic QTL, which also controlled maximum tiller number per unit area (QMTN.sicau-4D) and tiller number during pre-winter per unit area (QTNW.sicau-4D). The marker Xcfd23 associated with SR may be utilized in marker-assisted selection in wheat breeding.


Subject(s)
Chromosome Mapping/methods , Quantitative Trait Loci , Triticum/chemistry , Genetic Linkage , Genetic Markers/genetics , Microsatellite Repeats , Phenotype , Plant Breeding , Triticum/genetics
19.
Front Plant Sci ; 8: 799, 2017.
Article in English | MEDLINE | ID: mdl-28555152

ABSTRACT

Rye has been used worldwide as a source for the genetic improvement of wheat. In this study, two stable wheat-rye primary T1RS.1BL translocation lines were selected from the progeny of the crossing of the wheat cultivar Mianyang11-1 and a Chinese local rye variety, Weining. These two novel translocation lines were identified by molecular cytogenetic analysis. PCR results, multi-color fluorescence in situ hybridization (MC-FISH), and acid polyacrylamide gel electrophoresis (A-PAGE) indicated that both new translocation lines harbor a pair of T1RS.1BL translocation chromosomes, and have been named RT828-10 and RT828-11, respectively. The cytogenetic results also indicated that the pSc119.2 signals of 5AL were absent in both lines along with the pSc119.2 signals of 4AL of RT828-11. When inoculated with different stripe rust and powdery mildew isolates, both lines expressed high resistance to Puccinia striiformis f. sp. tritici and Blumeria graminis f. sp. tritici pathotypes, which are prevalent in China and are virulent on Yr9 and Pm8. The line RT828-11 also exhibited excellent agronomic traits in the field. The present study indicates that this rye variety may carry untapped variations that could potentially be used for wheat improvement.

20.
Cytogenet Genome Res ; 151(1): 50-59, 2017.
Article in English | MEDLINE | ID: mdl-28278512

ABSTRACT

Increased chromosome instability was induced by a rye (Secale cereale L.) monosomic 2R chromosome into wheat (Triticum aestivum L.). Centromere breakage and telomere dysfunction result in high rates of chromosome aberrations, including breakages, fissions, fusions, deletions, and translocations. Plants with target traits were sequentially selected to produce a breeding population, from which 3 translocation lines with target traits have been selected. In these lines, wheat chromosomes 2A, 2B, and 7B recombined with segments of the rye chromosome arm 2RL. This was detected by FISH analysis using repeat sequences pSc119.2, pAs1 and genomic DNA of rye together as probes. The translocation chromosomes in these lines were named as 2ASMR, 2BSMR, and 7BSMR. The small segments that were transferred into wheat consisted of pSc119.2 repeats and other chromatin regions that conferred resistance to stripe rust and expressed target traits. These translocation lines were highly resistant to stripe rust, and expressed several typical traits that were associated with chromosome arm 2RL, which are better than those of its wheat parent, disomic addition, and substitution lines that show agronomic characteristics. The integration of molecular methods and conventional techniques to improve wheat breeding schemes are discussed.


Subject(s)
Chromosomes, Plant/genetics , Secale/genetics , Translocation, Genetic , Triticum/genetics , Basidiomycota/physiology , Chromatin/genetics , Chromosomal Instability , Chromosome Aberrations , Crops, Agricultural/genetics , Crops, Agricultural/microbiology , Disease Resistance/genetics , Host-Pathogen Interactions , In Situ Hybridization, Fluorescence/methods , Plant Breeding/methods , Plant Diseases/genetics , Plant Diseases/microbiology , Secale/microbiology , Telomere/genetics , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...