Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 189: 38-51, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387723

ABSTRACT

Acute aortic dissection (AAD) progresses rapidly and is associated with high mortality; therefore, there remains an urgent need for pharmacological agents that can protect against AAD. Herein, we examined the therapeutic effects of cannabidiol (CBD) in AAD by establishing a suitable mouse model. In addition, we performed human AAD single-cell RNA sequencing and mouse AAD bulk RNA sequencing to elucidate the potential underlying mechanism of CBD. Pathological assays and in vitro studies were performed to verify the results of the bioinformatic analysis and explore the pharmacological function of CBD. In a ß-aminopropionitrile (BAPN)-induced AAD mouse model, CBD reduced AAD-associated morbidity and mortality, alleviated abnormal enlargement of the ascending aorta and aortic arch, and suppressed macrophage infiltration and vascular smooth muscle cell (VSMC) apoptosis. Bioinformatic analysis revealed that the pro-apoptotic gene PMAIP1 was highly expressed in human and mouse AAD samples, and CBD could inhibit Pmaip1 expression in AAD mice. Using human aortic VSMCs (HAVSMCs) co-cultured with M1 macrophages, we revealed that CBD alleviated HAVSMCs mitochondrial-dependent apoptosis by suppressing the BAPN-induced overexpression of PMAIP1 in M1 macrophages. PMAIP1 potentially mediates HAVSMCs apoptosis by regulating Bax and Bcl2 expression. Accordingly, CBD reduced AAD-associated morbidity and mortality and mitigated the progression of AAD in a mouse model. The CBD-induced effects were potentially mediated by suppressing macrophage infiltration and PMAIP1 (primarily expressed in macrophages)-induced VSMC apoptosis. Our findings offer novel insights into M1 macrophages and HAVSMCs interaction during AAD progression, highlighting the potential of CBD as a therapeutic candidate for AAD treatment.


Subject(s)
Aortic Dissection , Cannabidiol , Animals , Humans , Mice , Aminopropionitrile/pharmacology , Aortic Dissection/drug therapy , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cannabidiol/pharmacology , Cannabidiol/metabolism , Macrophages/metabolism , Muscle, Smooth, Vascular/pathology
2.
Circulation ; 149(14): 1121-1138, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38152931

ABSTRACT

BACKGROUND: Progressive remodeling of cardiac gene expression underlies decline in cardiac function, eventually leading to heart failure. However, the major determinants of transcriptional network switching from normal to failed hearts remain to be determined. METHODS: In this study, we integrated human samples, genetic mouse models, and genomic approaches, including bulk RNA sequencing, single-cell RNA sequencing, chromatin immunoprecipitation followed by high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, to identify the role of chromatin remodeling complex INO80 in heart homeostasis and dysfunction. RESULTS: The INO80 chromatin remodeling complex was abundantly expressed in mature cardiomyocytes, and its expression further increased in mouse and human heart failure. Cardiomyocyte-specific overexpression of Ino80, its core catalytic subunit, induced heart failure within 4 days. Combining RNA sequencing, chromatin immunoprecipitation followed by high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, we revealed INO80 overexpression-dependent reshaping of the nucleosomal landscape that remodeled a core set of transcription factors, most notably the MEF2 (Myocyte Enhancer Factor 2) family, whose target genes were closely associated with cardiac function. Conditional cardiomyocyte-specific deletion of Ino80 in an established mouse model of heart failure demonstrated remarkable preservation of cardiac function. CONCLUSIONS: In summary, our findings shed light on the INO80-dependent remodeling of the chromatin landscape and transcriptional networks as a major mechanism underlying cardiac dysfunction in heart failure, and suggest INO80 as a potential preventative or interventional target.


Subject(s)
Gene Regulatory Networks , Heart Failure , Humans , Animals , Mice , Chromatin Assembly and Disassembly , Chromatin/metabolism , Myocytes, Cardiac/metabolism , Heart Failure/genetics , Heart Failure/metabolism , RNA/metabolism , Transposases/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , DNA-Binding Proteins/metabolism
3.
Stem Cell Rev Rep ; 19(5): 1540-1553, 2023 07.
Article in English | MEDLINE | ID: mdl-36971904

ABSTRACT

BACKGROUND: RAP1 interacting factor 1 (Rif1) is highly expressed in mice embryos and mouse embryonic stem cells (mESCs). It plays critical roles in telomere length homeostasis, DNA damage, DNA replication timing and ERV silencing. However, whether Rif1 regulates early differentiation of mESC is still unclear. METHODS: In this study, we generated a Rif1 conditional knockout mouse embryonic stem (ES) cell line based on Cre-loxP system. Western blot, flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR), RNA high-throughput sequencing (RNA-Seq), chromatin immunoprecipitation followed high-throughput sequencing (ChIP-Seq), chromatin immunoprecipitation quantitative PCR (ChIP-qPCR), immunofluorescence, and immunoprecipitation were employed for phenotype and molecular mechanism assessment. RESULTS: Rif1 plays important roles in self-renewal and pluripotency of mESCs and loss of Rif1 promotes mESC differentiation toward the mesendodermal germ layers. We further show that Rif1 interacts with histone H3K27 methyltransferase EZH2, a subunit of PRC2, and regulates the expression of developmental genes by directly binding to their promoters. Rif1 deficiency reduces the occupancy of EZH2 and H3K27me3 on mesendodermal gene promoters and activates ERK1/2 activities. CONCLUSION: Rif1 is a key factor in regulating the pluripotency, self-renewal, and lineage specification of mESCs. Our research provides new insights into the key roles of Rif1 in connecting epigenetic regulations and signaling pathways for cell fate determination and lineage specification of mESCs.


Subject(s)
Fibrinogen , Mouse Embryonic Stem Cells , Animals , Mice , Fibrinogen/metabolism , Cell Differentiation/genetics , Cell Line , Germ Layers/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism
4.
Protein Cell ; 13(11): 842-862, 2022 11.
Article in English | MEDLINE | ID: mdl-35394262

ABSTRACT

Postnatal heart maturation is the basis of normal cardiac function and provides critical insights into heart repair and regenerative medicine. While static snapshots of the maturing heart have provided much insight into its molecular signatures, few key events during postnatal cardiomyocyte maturation have been uncovered. Here, we report that cardiomyocytes (CMs) experience epigenetic and transcriptional decline of cardiac gene expression immediately after birth, leading to a transition state of CMs at postnatal day 7 (P7) that was essential for CM subtype specification during heart maturation. Large-scale single-cell analysis and genetic lineage tracing confirm the presence of transition state CMs at P7 bridging immature state and mature states. Silencing of key transcription factor JUN in P1-hearts significantly repressed CM transition, resulting in perturbed CM subtype proportions and reduced cardiac function in mature hearts. In addition, transplantation of P7-CMs into infarcted hearts exhibited cardiac repair potential superior to P1-CMs. Collectively, our data uncover CM state transition as a key event in postnatal heart maturation, which not only provides insights into molecular foundations of heart maturation, but also opens an avenue for manipulation of cardiomyocyte fate in disease and regenerative medicine.


Subject(s)
Heart , Myocytes, Cardiac , Gene Expression Regulation , Myocytes, Cardiac/metabolism , Single-Cell Analysis , Transcription Factors/metabolism
5.
Nat Commun ; 11(1): 2585, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444791

ABSTRACT

Cardiac maturation lays the foundation for postnatal heart development and disease, yet little is known about the contributions of the microenvironment to cardiomyocyte maturation. By integrating single-cell RNA-sequencing data of mouse hearts at multiple postnatal stages, we construct cellular interactomes and regulatory signaling networks. Here we report switching of fibroblast subtypes from a neonatal to adult state and this drives cardiomyocyte maturation. Molecular and functional maturation of neonatal mouse cardiomyocytes and human embryonic stem cell-derived cardiomyocytes are considerably enhanced upon co-culture with corresponding adult cardiac fibroblasts. Further, single-cell analysis of in vivo and in vitro cardiomyocyte maturation trajectories identify highly conserved signaling pathways, pharmacological targeting of which substantially delays cardiomyocyte maturation in postnatal hearts, and markedly enhances cardiomyocyte proliferation and improves cardiac function in infarcted hearts. Together, we identify cardiac fibroblasts as a key constituent in the microenvironment promoting cardiomyocyte maturation, providing insights into how the manipulation of cardiomyocyte maturity may impact on disease development and regeneration.


Subject(s)
Fibroblasts/physiology , Myocardial Infarction/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Age Factors , Animals , Animals, Newborn , Culture Media, Conditioned/pharmacology , Female , Fibroblasts/cytology , Heart/growth & development , Humans , Male , Mice, Inbred C57BL , Signal Transduction , Single-Cell Analysis
6.
Circulation ; 141(21): 1704-1719, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32098504

ABSTRACT

BACKGROUND: Pressure overload-induced pathological cardiac hypertrophy is a common predecessor of heart failure, the latter of which remains a major cardiovascular disease with increasing incidence and mortality worldwide. Current therapeutics typically involve partially relieving the heart's workload after the onset of heart failure. Thus, more pathogenesis-, stage-, and cell type-specific treatment strategies require refined dissection of the entire progression at the cellular and molecular levels. METHODS: By analyzing the transcriptomes of 11,492 single cells and identifying major cell types, including both cardiomyocytes and noncardiomyocytes, on the basis of their molecular signatures, at different stages during the progression of pressure overload-induced cardiac hypertrophy in a mouse model, we characterized the spatiotemporal interplay among cell types, and tested potential pharmacological treatment strategies to retard its progression in vivo. RESULTS: We illustrated the dynamics of all major cardiac cell types, including cardiomyocytes, endothelial cells, fibroblasts, and macrophages, as well as those of their respective subtypes, during the progression of disease. Cellular crosstalk analysis revealed stagewise utilization of specific noncardiomyocytes during the deterioration of heart function. Specifically, macrophage activation and subtype switching, a key event at middle-stage of cardiac hypertrophy, was successfully targeted by Dapagliflozin, a sodium glucose cotransporter 2 inhibitor, in clinical trials for patients with heart failure, as well as TD139 and Arglabin, two anti-inflammatory agents new to cardiac diseases, to preserve cardiac function and attenuate fibrosis. Similar molecular patterns of hypertrophy were also observed in human patient samples of hypertrophic cardiomyopathy and heart failure. CONCLUSIONS: Together, our study not only illustrated dynamically changing cell type crosstalk during pathological cardiac hypertrophy but also shed light on strategies for cell type- and stage-specific intervention in cardiac diseases.


Subject(s)
Cardiomegaly/metabolism , Cell Communication , Endothelial Cells/metabolism , Fibroblasts/metabolism , Macrophages/metabolism , Myocytes, Cardiac/metabolism , Single-Cell Analysis , Ventricular Remodeling , Animals , Cardiomegaly/drug therapy , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Cardiovascular Agents/therapeutic use , Case-Control Studies , Cell Communication/drug effects , Disease Models, Animal , Disease Progression , Endothelial Cells/drug effects , Endothelial Cells/pathology , Fibroblasts/drug effects , Fibroblasts/pathology , Gene Expression Profiling , Humans , Macrophages/drug effects , Macrophages/pathology , Male , Mice, Inbred C57BL , Molecular Targeted Therapy , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , RNA-Seq , Signal Transduction , Transcriptome , Ventricular Remodeling/drug effects
7.
BMC Biol ; 17(1): 89, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31722692

ABSTRACT

BACKGROUND: Cardiac differentiation from human pluripotent stem cells provides a unique opportunity to study human heart development in vitro and offers a potential cell source for cardiac regeneration. Compared to the large body of studies investigating cardiac maturation and cardiomyocyte subtype-specific induction, molecular events underlying cardiac lineage commitment from pluripotent stem cells at early stage remain poorly characterized. RESULTS: In order to uncover key molecular events and regulators controlling cardiac lineage commitment from a pluripotent state during differentiation, we performed single-cell RNA-Seq sequencing and obtained high-quality data for 6879 cells collected from 6 stages during cardiac differentiation from human embryonic stem cells and identified multiple cell subpopulations with distinct molecular features. Through constructing developmental trajectory of cardiac differentiation and putative ligand-receptor interactions, we revealed crosstalk between cardiac progenitor cells and endoderm cells, which could potentially provide a cellular microenvironment supporting cardiac lineage commitment at day 5. In addition, computational analyses of single-cell RNA-Seq data unveiled ETS1 (ETS Proto-Oncogene 1) activation as an important downstream event induced by crosstalk between cardiac progenitor cells and endoderm cells. Consistent with the findings from single-cell analysis, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) against ETS1 revealed genomic occupancy of ETS1 at cardiac structural genes at day 9 and day 14, whereas ETS1 depletion dramatically compromised cardiac differentiation. CONCLUSION: Together, our study not only characterized the molecular features of different cell types and identified ETS1 as a crucial factor induced by cell-cell crosstalk contributing to cardiac lineage commitment from a pluripotent state, but may also have important implications for understanding human heart development at early embryonic stage, as well as directed manipulation of cardiac differentiation in regenerative medicine.


Subject(s)
Cell Differentiation/genetics , Human Embryonic Stem Cells/physiology , Myocytes, Cardiac/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Humans , Proto-Oncogene Mas , Proto-Oncogene Protein c-ets-1/metabolism
8.
Circ Res ; 123(5): 538-549, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30026254

ABSTRACT

RATIONALE: Modulation of vascular smooth muscle cell (VSMC) phenotype plays a fundamental role in vascular development and diseases. Although extensive studies uncovered the roles of transcriptional regulation in VSMC-specific gene expression, how posttranscriptional regulation contributes to VSMC fate decisions remains to be determined. OBJECTIVE: To establish THO complex-dependent VSMC gene expression as a novel regulatory basis controlling VSMC phenotypes. METHODS AND RESULTS: Immunohistochemical staining against THOC2 and THOC5, 2 components of the THO complex, revealed a dramatic reduction in their expression in human arteries undergoing carotid endarterectomy compared with normal internal mammary arteries. Silencing of THOC2 or THOC5 led to dedifferentiation of VSMCs in vitro, characterized by decreased VSMC marker gene expression and increased migration and proliferation. Furthermore, RNA high-throughput sequencing (Seq) revealed that THOC5 silencing closely resembled the gene expression changes induced on PDGF (platelet-derived growth factor)-BB/PDGF-DD treatments in cultured VSMCs. Mechanistically, THOC2 and THOC5 physically interacted with and functionally relied on each other to bind to specific motifs on VSMC marker gene mRNAs. Interestingly, mRNAs that lost THOC2 or THOC5 binding during VSMC dedifferentiation were enriched for genes important for the differentiated VSMC phenotype. Last, THOC5 overexpression in injured rat carotid arteries significantly repressed loss of VSMC marker gene expression and neointima formation. CONCLUSIONS: Our data introduce dynamic binding of THO to VSMC marker gene mRNAs as a novel mechanism contributing to VSMC phenotypic switching and imply THOC5 as a potential intervention node for vascular diseases.


Subject(s)
Cell Differentiation , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , RNA Processing, Post-Transcriptional , Animals , Cells, Cultured , Female , Gene Silencing , Humans , Male , Mice , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats , Rats, Sprague-Dawley
9.
Sci Rep ; 7(1): 1500, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28473716

ABSTRACT

Uncovering the molecular basis of mammalian cardiomyocyte proliferation may eventually lead to better approaches for heart regeneration. Compared to extensively-studied transcriptional regulation, the roles of posttranscriptional regulation in cardiac cell fate decisions remain largely unknown. Here, we identified Cnot3 as a critical regulator in cardiomyocyte proliferation at the late stage of cardiac differentiation from human ESCs. Cnot3 was highly expressed in cardiomyocytes with higher proliferation potential in both human and mouse, and its depletion resulted in significant reduction in the proliferative capacity of cells. Furthermore, Cnot3 overexpression greatly enhanced proliferation in both cultured human cardiomyocytes and infarcted murine hearts. Mechanistically, the Ccr4-Not complex preferentially interacted with anti-proliferation gene transcripts in a Cnot3-dependent manner, and promoted their degradation. Together, our study supported the model that Cnot3 enhances cardiomyocyte proliferation by promoting cell cycle inhibitor mRNA degradation. It revealed a previously unrecognized role of mRNA degradation in cardiomyocyte growth, and suggested a potential strategy to control cardiac cell fates in development and diseases.


Subject(s)
Embryo, Mammalian/cytology , Myocytes, Cardiac/cytology , RNA Stability/genetics , Transcription Factors/metabolism , Animals , Cell Proliferation , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...