Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 27(11): 11637-11648, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31970642

ABSTRACT

Vegetation plays an important role in the energy exchange, water cycle, carbon cycle, biogeochemical cycle, and maintenance of surface ecosystems. In recent years, regional vegetation cover has changed significantly. This study used statistical analyses, including the Mann-Kendall trend test, the Hurst exponent, and Pettitt test, to analyze the characteristics of temporal and spatial variation of vegetation coverage in the Xijiang River basin from 2000 to 2013. The results showed that vegetation coverage of 98.76% of the Xijiang River basin is weakly variable (Cv < 0.1). The area with significantly increased vegetation accounts for 43.45% of the total area (p < = 0.05). A total of 19.47% of vegetation coverage in the Xijiang River basin had significant change-points from 2004 to 2008 (p < = 0.05), and the area of concave change-points accounted for 25.99% of the total area of point increased the vegetation coverage. At an altitude of 500-2000 m, the altitude has an inhibitory effect on vegetation coverage. When the slope is less than 35 degrees, the slope has a promoting effect on vegetation coverage. Rich precipitation resources are the main source of soil water supply, and higher temperature provides better thermal energy resources, which may have a significant impact on vegetation growth in the future and cause time lag effects of climatic factors on vegetation coverage. The vegetation coverage and the area affected by the precipitation and temperature (time lag factors) accounted for 32.99% and 31.47% of the total watershed, respectively. The correlation between climatic factors, topographic factors, and vegetation coverage increased over time. The results from this study will help to further deepen the understanding of vegetation cover and its influencing factors, and provide a scientific basis for ecological restoration projects such as vegetation restoration in the Xijiang River basin of China.


Subject(s)
Ecosystem , Rivers , China , Climate Change , Environmental Monitoring
2.
Sci Total Environ ; 707: 135507, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31761370

ABSTRACT

Soil respiration is a large carbon flux from terrestrial ecosystems to the atmosphere, and small variations in soil respiration can prominently influence the global carbon (C) cycle. The vegetation changes could directly affect soil respiration. The large-scale "Grain for Green" project carried out on the Loess Plateau, China has importantly affected the contribution of soil respiration to atmospheric carbon dioxide (CO2). Therefore, it is important to study the effects of vegetation restoration on soil respiration. We selected four land-use types: crop, forest, shrub, and grassland in the Zhifanggou watershed to analyze variation in soil respiration during dry and rainy seasons. Furthermore, the source of CO2 emissions from soil respiration was identified using isotopes. The results showed that soil respiration in the rainy season was significantly higher than that in the dry season (P < .05). Soil respiration in the dry season was as follows: shrubland (1.04 µmol m-2 s-1) > cropland (0.72 µmol m-2 s-1) > forestland (0.44 µmol m-2 s-1) > grassland (0.33 µmol m-2 s-1). However, grass and forestland had significantly higher soil respiration than shrub and cropland in the rainy season (P < .05). Roots were the main source of soil respiration in cropland, which contributed >70% of CO2 emissions. Following revegetation, litter contributed more to soil respiration than roots or soil microorganisms at >68% of soil respiration. Our results provide a theoretical basis for assessing C balance in terrestrial ecosystems.


Subject(s)
Ecosystem , Soil , Carbon Cycle , Carbon Dioxide , China
3.
Sci Total Environ ; 664: 968-974, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30769320

ABSTRACT

The sediment-reducing effect of check dams and the safety issues following dam breaks are long-standing concerns. This study analyzed the runoff change and sediment source during rainstorms in a small watershed using a multivariate mixed model and a comparative analysis of watersheds. The problem of sediment loss from dammed farmland following check dam break during rainstorms was evaluated. The results showed that the flood peak lag time (PLT) was significantly influenced by pre-soil moisture in cases of small amounts of rainfall but not during rainstorms. Ecological construction significantly reduced the linear correlation between rainfall and runoff modulus (RM). The reduction in sediment delivery modulus (SDM) due to the check dam was more significant than that in RM. The reduction in RM and SDM under rainstorm conditions were 16%-74% and 53%-93%, respectively. The contributions of inter-gully and gully lands to the sediment deposited in dammed farmland during a large rainstorm on July 26, 2017 were 38.07% and 61.93%, respectively. Soil erosion remained significant during large rainstorms. The increase in vegetation coverage on the hill slope increased the amount of sediment from gully lands. Check dam breaches have accounted for a loss of only 1.2% of the total area of the dammed farmland, and thus have not caused a large loss of sediment. However, breaches in them clearly increased the coefficient of variation of RM and SDM. Therefore, check dams have a critical effect on controlling sediment delivery at the watershed scale. Dam breaks do not result in a large percentage of sediment loss in the dammed farmland.

4.
Sci Total Environ ; 664: 984-994, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30769322

ABSTRACT

Revegetation and check dam construction are two widely applied soil erosion control measures on the Loess Plateau of China. They play important roles in sediment yield reduction. However, it remains unclear how these large-scale land-use changes and in-channel structures affect water yield and sediment load on the watershed scale. A combination of field work and modeling exercises were used to quantitatively assess the effects of land-use changes and check dam construction on hydrological processes in the Wuding River watershed. The study area suffered important land-use changes with increases in forestland and grassland, coupled with decreases in cropland, from 1980 to 2010. A large number of check dams were constructed from 1970 to 1980. Runoff and sediment yield in the watershed showed significant decreasing trends (P < 0.01), with change points occurring in the early 1970s. Human activity contributed to 75% and 89% of runoff and sediment changes, respectively. The simulations showed that in a scenario without check dams, runoff and sediment increased by 12% and 11.7%, respectively. Vegetation recovery reduced runoff and sediment yield. 'Grain for Green' resulted in decreasing runoff and sediment levels, and reforestation had more hydrological regulatory effects compared with scenarios involving the conversion of cropland to grassland. Moreover, the combination of revegetation and check dam construction had a greater impact on water yield and sediment transportation. Check dams provide short-term flood control and sediment reductions, whereas land-use changes are long-term sustained soil erosion control measures. It may be more efficient to combine check dam construction with revegetation strategies.

5.
Sci Total Environ ; 666: 721-730, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30812006

ABSTRACT

The seasonal freeze-thaw process affects soil water migration, which influence spring planting, especially in arid and semi-arid regions that cannot be irrigated on the Loess Plateau. This study was conducted to evaluate differences in the freeze-thaw process and water migration between dam farmland (DF) and slope farmland (SF). To accomplish this, two typical agricultural soils (DF and SF), soil water content (SWC) and soil temperature (ST) were monitored at different depths (15, 30, 60 and 90 cm), were investigated under freeze-thaw conditions from November 2015 to April 2016 in the Northwest China. The results showed that different freeze-thaw process between dam farmland (DF) and slope farmland (SF). The DF can keep soil water content resulting from longer frozen period. Thermal transmission between soil and air in SF is greater than that in DF. The SWC values in DF were higher than in SF at each depth layer under similar soil temperature. Migrated and incremental SWC in the DF is greater than that in SF during the freeze-thaw process. The initial SWC is the main impact on freeze-thaw process in this study. This research can provide useful information to guide the water management of seasonally frozen agricultural soil.

6.
Sci Total Environ ; 652: 505-512, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30368180

ABSTRACT

Vegetation restoration, terrace and check dam construction are the major measures for soil and water conservation on the Loess Plateau. These effective measures of stabilizing soils have significant impacts on soil organic carbon (SOC) distribution. However, following ecological construction, whether the hilly watershed acts as a source or a sink of soil carbon is still unknown. To understand the impact of land-use changes combined with check dam construction on SOC distribution, 1060 soil samples were collected from a 100 cm soil profile across a watershed on the Loess Plateau. The soils in the 0-20 cm layer had a higher SOC concentration than those of the 20-40, 40-60, 60-80 and 80-100 cm layers. Forestland, shrubland and terrace had significant higher SOC concentrations in the 0-20 cm soil layer than that of sloping cropland and dammed farmland (p < 0.05). SOC densities (0-100 cm) in terrace, forestland, shrubland, grassland, sloping cropland and dammed farmland were 12.09, 11.99, 11.89, 11.77, 11.41 and 10.11 kg m-2, respectively. These estimations suggested that SOC was redistributed in the watershed through land-use changes. Topographical factors, including altitude, aspect and slope had impacts on SOC concentrations. The application of hydrological controls to hillslopes and along river channels should be considered when assessing carbon sequestration within the soil erosion subsystem.

7.
Sci Rep ; 8(1): 2972, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29445237

ABSTRACT

Two contiguous watersheds in the Loess Plateau in China that differed in the way their vegetation had been restored-afforestation or natural revegetation-differed in their consumption of soil moisture: the afforested watershed consumed more soil moisture, although the difference was significant only in wet years. Yet, both the afforestation and natural revegetation did not induce the soil desiccation in the study area. In the afforested watershed, soil moisture was depleted even beyond a depth of 100 cm, whereas in the grassland (natural revegetation), the depletion was confined to a layer less than 60 cm deep. Rainfall in the growing season accounted for 46-60% of the variation in soil moisture in the 0-60 cm layer in the grassland, but only 22-39% of that in the forest land. Overall, afforestation is the better option for the Loess Plateau only in areas where the annual rainfall is more than 500 mm. In any attempt at revegetation, the choice of tree species and planting densities should match the carrying capacity of the region's water resources.

SELECTION OF CITATIONS
SEARCH DETAIL
...