Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Materials (Basel) ; 16(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38068214

ABSTRACT

Piezoelectric thin films grown on a mechanical, flexible mica substrate have gained significant attention for their ability to convert mechanical deformation into electrical energy though a curved surface. To extract the generated charge from the PZT thin films, bottom electrodes are typically grown on mica substrates. However, this bottom electrode also serves as a buffering layer for the growth of PZT films, and its impact on the piezoelectric properties of PZT thin films remains understudied. In this work, the effect of Pt and LaNiO3 bottom electrodes on the piezoelectric effect of a Pb(Zr0.52,Ti0.48)O3 thin film was investigated. It was observed that the PZT thin films on LNO/Mica substrate possessed weaker stress, stronger (100) preferred orientation, and higher remanent polarization, which is beneficial for a higher piezoelectric response theoretically. However, due to insufficient grain growth resulting in more inactive grain boundaries and lattice imperfections, the piezoelectric coefficient of the PZT thin film on LNO/Mica was smaller than that of the PZT thin film on a Pt/Mica substrate. Therefore, it is concluded that, under the current experimental conditions, PZT films grown with Pt as the bottom electrode are better suited for applications in flexible piezoelectric sensor devices. However, when using LNO as the bottom electrode, it is possible to optimize the grain size of PZT films by adjusting the sample preparation process to achieve piezoelectric performance exceeding that of the PZT/Pt/Mica samples.

2.
Comput Intell Neurosci ; 2022: 8584888, 2022.
Article in English | MEDLINE | ID: mdl-35515504

ABSTRACT

The increasing use of smart machines and devices is not only changing production principles but also reshaping the value of cocreation logic. The interaction between human and smart machine is the enabler of generating augmented intelligence. A system dynamics model is abstracted from smart manufacturing practices to represent the evolutionary processes of inertia, capability, and reliability induced by human-machine interaction. Human-machine interaction is conceptualized into two dimensions: technical and cognitive interaction. Simulation experiments illustrate how the improvement of human-machine interaction can leverage the dynamic capability and reduce the inertia in enterprises through multiple nonlinear feedbacks. There are two pathways to improve reliability and performance in enterprises by human-machine interaction: (1) to promote initiative innovation (change) from endogenous enabler by improving dynamic capability and (2) to promote transformation of knowledge and variation triggered by exogenous environmental changes to improve the dynamic capability for the flexibility and reliability.


Subject(s)
Commerce , Feedback , Humans , Reproducibility of Results
3.
Sensors (Basel) ; 21(18)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34577499

ABSTRACT

The inductive displacement sensor is widely used in active magnetic bearing (AMB) systems to detect rotor displacement in real time, and the performance of the sensor directly affects the performance of AMB. At present, most theoretical studies on the working principle of inductive displacement sensor are based on a traditional mathematical model, ignoring the influence of the core magnetic resistance and core eddy current, which will lead to a certain error between the theoretical analysis of the sensor output characteristics and the actual situation. In this regard, based on the theory of electromagnetic field and circuit, an improved theoretical model of the inductive sensor was established in this paper by introducing the complex permeability, by which the influence of core eddy current on magnetic field can be taken into account. In order to verify the improved model, an eight-pole radial self-inductive displacement sensor with an air gap of 1 mm was designed. Then the electromagnetic field of the designed sensor was simulated by a finite element software and the GW LCR-6100 measuring instrument was used to measure the changes of the inductance and resistance of the designed sensor core coils with the rotor displacement at 20-100 kHz. The results demonstrated that there is a good linear relationship between the impedance change of the sensor coils and the rotor displacement within the measurement range of -0.4 ~ +0.4 mm. At the same time, compared with the traditional model, the sensitivity of the improved theoretical model is closer to the results from FEM and experiment, and the accuracy of the sensitivity of the improved theoretical model can be approximately doubled, despite there are certain differences with the experimental situation. Therefore, the improved theoretical model considering complex permeability is of great significance for studying the influence of core eddy current on the coil impedance of sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...