Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 526
Filter
1.
Cancer Res Commun ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954770

ABSTRACT

Capivasertib is a potent selective inhibitor of AKT. It was recently FDA-approved in combination with fulvestrant to treat HR+, HER2-negative breast cancers with certain genetic alteration(s) activating the PI3K pathway. In Phase I trials, heavily pre-treated patients with tumours selected for activating PI3K pathway mutations treated with capivasertib monotherapy demonstrated objective response rates of <30%. We investigated the proteomic profile associated with capivasertib response in genetically pre-selected patients and cancer cell lines. We analyzed samples from 16 PIK3CA-mutated patient tumours collected prior to capivasertib monotherapy in the Phase I trial. PI3K pathway proteins were precisely quantified with immuno-MALDI-MS. Global proteomic profiles were also obtained. Patients were classified according to response to capivasertib monotherapy: "clinical benefit (CB)" (≥12 weeks without progression, n=7) or "no clinical benefit (NCB)" (progression in <12 weeks, n=9). Proteins that differed between the patient groups were subsequently quantified in AKT1- or PIK3CA-altered breast cancer cell lines with varying capivasertib sensitivity. The measured concentrations of AKT1 and AKT2 varied among the PIK3CA-mutated tumours but did not differ between the CB and NCB groups. However, analysis of the global proteome data showed that translational activity was higher in tumours of the NCB vs. CB group. When reproducibly quantified by validated LC-MRM-MS assays, the same proteins of interest similarly distinguished between capivasertib-sensitive vs. -resistant cell lines. The results provide further evidence that increased mTORC1-driven translation functions as a mechanism of resistance to capivasertib monotherapy. Protein concentrations may offer additional insights for patient selection for capivasertib, even among genetically pre-selected patients.

3.
Plant Physiol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723194

ABSTRACT

TALEs (transcription activator-like effectors) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harbouring only 7.5-repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence-specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death-inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.

4.
Anal Chem ; 96(23): 9721-9728, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38807522

ABSTRACT

Can reversed-phase peptide retention be the same for C8 and C18 columns? or increase for otherwise identical columns with a smaller surface area? Can replacing trifluoroacetic acid (TFA) with formic acid (FA) improve the peak shape? According to our common understanding of peptide chromatography, absolutely not. Surprisingly, a thorough comparison of the peptide separation selectivity of 100 and 120 Šfully porous C18 sorbents to maximize the performance of our in-house proteomics LC-MS/MS setup revealed an unexpectedly higher peptide retentivity for a wider pore packing material, despite it having a smaller surface area. Concurrently, the observed increase in peptide retention─which drives variation in separation selectivity between 100 and 120 Špore size materials─was more pronounced for smaller peptides. These findings contradict the central dogmas that underlie the development of all peptide RP-HPLC applications: (i) a larger surface area leads to higher retention and (ii) increasing the pore size should benefit the retention of larger analytes. Based on our intriguing findings, we compared reversed-phase high-performance liquid chromatography peptide retention for a total of 20 columns with pore sizes between 60 and 300 Šusing FA- and TFA-based eluents. Our results unequivocally attest that the larger size of ion pairs in FA- vs TFA-based eluents leads to the observed impact on selectivity and peptide retention. For FA, peptide retention peaks at 200 Špore size, compared to between 120 and 200 Šfor TFA. However, the decrease in retention for narrow-pore particles is more profound in FA. Our findings suggest that common assumptions about analyte size and accessible surface area should be revisited for ion-pair RP separation of small peptides, typical for proteomic applications that are predominantly applying FA eluents. Hybrid silica-based materials with pore sizes of 130-200 Šshould be specifically targeted for bottom-up proteomic applications to obtain both superior peak shape and peptide retentivity. This challenging task of attaining the best RPLC column for proteomics calls for closer collaboration between LC column manufacturers and proteomic LC specialists.


Subject(s)
Chromatography, Reverse-Phase , Peptides , Proteomics , Proteomics/methods , Peptides/chemistry , Peptides/analysis , Peptides/isolation & purification , Porosity , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Particle Size , Trifluoroacetic Acid/chemistry , Surface Properties
5.
Acta Paediatr ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808465

ABSTRACT

AIM: Sudden unexpected postnatal collapse is a life-threatening event and may occur in any newborn infant. Safe skin-to-skin contact, and awareness of sudden unexpected postnatal collapse are key to its prevention. The aim of this study was to survey the presence of skin-to-skin contact and/or sudden unexpected postnatal collapse protocols in the 70 perinatal centres in the Netherlands. METHODS: We performed a survey among Dutch paediatricians to examine the safe skin-to-skin contact and sudden unexpected postnatal collapse protocols. RESULTS: We received data from 59/70 (85%) perinatal centres. At least one case of sudden unexpected postnatal collapse was reported in 35/59 (59%) of these centres. Nearly half the centres had safe skin-to-skin contact and/or sudden unexpected postnatal collapse protocols. Ultimately, 16 protocols were available for analysis. They showed considerable differences in the type of perinatal care provided. Most protocols lacked recently published insights on safe skin-to-skin contact. Besides, protocols failed to incorporate awareness of and knowledge on how to prevent sudden unexpected postnatal collapse. CONCLUSION: This study underlines the importance of drawing up uniform, multidisciplinary guidelines containing recommendations for the prevention of sudden unexpected postnatal collapse in the Netherlands.

6.
Case Rep Hematol ; 2024: 6964818, 2024.
Article in English | MEDLINE | ID: mdl-38596354

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a rare and often fatal syndrome of immune hyperactivation, cytokine dysregulation, and severe inflammation. This severe syndrome is commonly triggered by infection, malignancy, autoimmunity, or immunosuppression. We present herein the case of a 56-year-old-female diagnosed with HLH triggered by an acute cytomegalovirus (CMV) infection with viremia in the context of immunosuppression for inflammatory bowel disease. This case highlights the importance of utilizing multiple diagnostic tools, prompt initiation of anti-hemophagocytic treatment, and management of the underlying etiology, to prevent significant morbidity and mortality.

7.
J Proteome Res ; 23(5): 1779-1787, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38655860

ABSTRACT

To prevent doping practices in sports, the World Anti-Doping Agency implemented the Athlete Biological Passport (ABP) program, monitoring biological variables over time to indirectly reveal the effects of doping rather than detect the doping substance or the method itself. In the context of this program, a highly multiplexed mass spectrometry-based proteomics assay for 319 peptides corresponding to 250 proteins was developed, including proteins associated with blood-doping practices. "Baseline" expression profiles of these potential biomarkers in capillary blood (dried blood spots (DBS)) were established using multiple reaction monitoring (MRM). Combining DBS microsampling with highly multiplexed MRM assays is the best-suited technology to enhance the effectiveness of the ABP program, as it represents a cost-effective and robust alternative analytical method with high specificity and selectivity of targets in the attomole range. DBS data were collected from 10 healthy athlete volunteers over a period of 140 days (28 time points per participant). These comprehensive findings provide a personalized targeted blood proteome "fingerprint" showcasing that the targeted proteome is unique to an individual and likely comparable to a DNA fingerprint. The results can serve as a baseline for future studies investigating doping-related perturbations.


Subject(s)
Blood Proteins , Doping in Sports , Dried Blood Spot Testing , Proteomics , Humans , Doping in Sports/prevention & control , Proteomics/methods , Blood Proteins/analysis , Dried Blood Spot Testing/methods , Dried Blood Spot Testing/standards , Male , Reference Values , Adult , Biomarkers/blood , Mass Spectrometry/methods , Substance Abuse Detection/methods , Proteome/analysis , Athletes , Female
8.
PeerJ ; 12: e17075, 2024.
Article in English | MEDLINE | ID: mdl-38495764

ABSTRACT

Finding a mate is of the utmost importance for organisms, and the traits associated with successfully finding one can be under strong selective pressures. In habitats where biomass and population density is often low, like the enormous open spaces of the deep sea, animals have evolved many adaptations for finding mates. One convergent adaptation seen in many deep-sea fishes is sexual dimorphism in olfactory organs, where, relative to body size, males have evolved greatly enlarged olfactory organs compared to females. Females are known to give off chemical cues such as pheromones, and these chemical stimuli can traverse long distances in the stable, stratified water of the deep sea and be picked up by the olfactory organs of males. This adaptation is believed to help males in multiple lineages of fishes find mates in deep-sea habitats. In this study, we describe the first morphological evidence of sexual dimorphism in the olfactory organs of lanternfishes (Myctophidae) in the genus Loweina. Lanternfishes are one of the most abundant vertebrates in the deep sea and are hypothesized to use visual signals from bioluminescence for mate recognition or mate detection. Bioluminescent cues that are readily visible at distances as far as 10 m in the aphotic deep sea are likely important for high population density lanternfish species that have high mate encounter rates. In contrast, myctophids found in lower density environments where species encounter rates are lower, like those in Loweina, likely benefit from longer-range chemical or olfactory cues for finding and identifying mates.


Subject(s)
Fishes , Sex Characteristics , Animals , Female , Male , Fishes/anatomy & histology , Ecosystem
9.
J Proteome Res ; 23(4): 1360-1369, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38457694

ABSTRACT

Trypsin is the gold-standard protease in bottom-up proteomics, but many sequence stretches of the proteome are inaccessible to trypsin and standard LC-MS approaches. Thus, multienzyme strategies are used to maximize sequence coverage in post-translational modification profiling. We present fast and robust SP3- and STRAP-based protocols for the broad-specificity proteases subtilisin, proteinase K, and thermolysin. All three enzymes are remarkably fast, producing near-complete digests in 1-5 min, and cost 200-1000× less than proteomics-grade trypsin. Using FragPipe resolved a major challenge by drastically reducing the duration of the required "unspecific" searches. In-depth analyses of proteinase K, subtilisin, and thermolysin Jurkat digests identified 7374, 8178, and 8753 unique proteins with average sequence coverages of 21, 29, and 37%, including 10,000s of amino acids not reported in PeptideAtlas' >2400 experiments. While we could not identify distinct cleavage patterns, machine learning could distinguish true protease products from random cleavages, potentially enabling the prediction of cleavage products. Finally, proteinase K, subtilisin, and thermolysin enabled label-free quantitation of 3111, 3659, and 4196 unique Jurkat proteins, which in our hands is comparable to trypsin. Our data demonstrate that broad-specificity proteases enable quantitative proteomics of uncharted areas of the proteome. Their fast kinetics may allow "on-the-fly" digestion of samples in the future.


Subject(s)
Peptide Hydrolases , Proteomics , Peptide Hydrolases/metabolism , Trypsin/metabolism , Proteome/analysis , Endopeptidase K , Thermolysin , Subtilisins
10.
Mol Cell Biol ; 44(1): 1-16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38270191

ABSTRACT

The ubiquitin proteasome system performs the covalent attachment of lysine 48-linked polyubiquitin chains to substrate proteins, thereby targeting them for degradation, while deubiquitylating enzymes (DUBs) reverse this process. This posttranslational modification regulates key features both of innate and adaptative immunity, including antigen presentation, protein homeostasis and signal transduction. Here we show that loss of one of the most highly expressed DUBs, Otub1, results in changes in murine splenic B cell subsets, leading to a significant increase in marginal zone and transitional B cells and a concomitant decrease in follicular B cells. We demonstrate that Otub1 interacts with the γ-subunit of the heterotrimeric G protein, Gng2, and modulates its ubiquitylation status, thereby controlling Gng2 stability. Proximal mapping of Gng2 revealed an enrichment in partners associated with chemokine signaling, actin cytoskeleton and cell migration. In line with these findings, we show that Otub1-deficient B cells exhibit greater Ca2+ mobilization, F-actin polymerization and chemotactic responsiveness to Cxcl12, Cxcl13 and S1P in vitro, which manifests in vivo as altered localization of B cells within the spleen. Together, our data establishes Otub1 as a novel regulator of G-protein coupled receptor signaling in B cells, regulating their differentiation and positioning in the spleen.


Subject(s)
Chemotaxis, Leukocyte , Deubiquitinating Enzymes , Spleen , Ubiquitin , Animals , Mice , Deubiquitinating Enzymes/metabolism , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Spleen/metabolism , Ubiquitin/metabolism , Ubiquitination , Cysteine Endopeptidases/metabolism , GTP-Binding Proteins/metabolism , B-Lymphocytes/metabolism , Chemotaxis, Leukocyte/genetics
11.
Eur J Investig Health Psychol Educ ; 13(11): 2697-2708, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37998076

ABSTRACT

BACKGROUND: Professional values are the foundation of nursing practice. Current research evidence on the influence of professional values on clinical competence among acute care nurses in the clinical area is lacking. PURPOSE: The purpose of this study was to examine the professional values and self-reported clinical competence among acute care nurses. METHODS: This quantitative study used a cross-sectional, correlational design. A convenience sample of 403 nurses was recruited to answer the survey utilizing the Nurses Professional Values Scale-3 and the Nurse Competence Scale. The Pearson correlation coefficient was computed to test the relationship between study variables, and a stepwise multiple regression analysis was then performed to investigate the predictors of nurses' professional values and clinical competence. RESULTS: The professional value of "caring" received the highest mean score, followed by "professionalism", while the factor "activism" was rated the lowest. Education was a significant predictor of all three factors of professional values. For clinical competence, "managing situations" was rated as the highest dimension, while "ensuring quality" was rated as the lowest. Moderate positive correlations were revealed between the three factors of professional values and all dimensions of nurses' clinical competence. Area of practice and "activism" were the only significant predictors of the nurses' clinical competence. CONCLUSIONS: Nurses perceived all three factors of professional values with high importance in influencing their clinical competence. These findings can contribute to the development of educational interventions to improve and sustain professional values and clinical competence among acute care nurses.

12.
Cell Metab ; 35(12): 2119-2135.e5, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37913768

ABSTRACT

The rising pancreatic cancer incidence due to obesity and type 2 diabetes is closely tied to hyperinsulinemia, an independent cancer risk factor. Previous studies demonstrated reducing insulin production suppressed pancreatic intraepithelial neoplasia (PanIN) pre-cancerous lesions in Kras-mutant mice. However, the pathophysiological and molecular mechanisms remained unknown, and in particular it was unclear whether hyperinsulinemia affected PanIN precursor cells directly or indirectly. Here, we demonstrate that insulin receptors (Insr) in KrasG12D-expressing pancreatic acinar cells are dispensable for glucose homeostasis but necessary for hyperinsulinemia-driven PanIN formation in the context of diet-induced hyperinsulinemia and obesity. Mechanistically, this was attributed to amplified digestive enzyme protein translation, triggering of local inflammation, and PanIN metaplasia in vivo. In vitro, insulin dose-dependently increased acinar-to-ductal metaplasia formation in a trypsin- and Insr-dependent manner. Collectively, our data shed light on the mechanisms connecting obesity-driven hyperinsulinemia and pancreatic cancer development.


Subject(s)
Carcinoma in Situ , Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulins , Pancreatic Neoplasms , Mice , Animals , Proto-Oncogene Proteins p21(ras)/metabolism , Receptor, Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Pancreatic Neoplasms/metabolism , Acinar Cells/metabolism , Acinar Cells/pathology , Carcinoma in Situ/metabolism , Carcinoma in Situ/pathology , Inflammation/metabolism , Hyperinsulinism/complications , Metaplasia/metabolism , Metaplasia/pathology , Obesity/metabolism , Insulins/metabolism
13.
J Med Chem ; 66(23): 15776-15800, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37982711

ABSTRACT

Novel C6-substituted pyrazolo[3,4-d]pyrimidine- and C2-substituted purine-based bisphosphonate (C6-PyraP-BP and C2-Pur-BP, respectively) inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS) were designed and evaluated for their ability to block the proliferation of multiple myeloma (MM), pancreatic ductal adenocarcinoma (PDAC), and colorectal cancer (CRC) cells. Pyrazolo[3,4-d]pyrimidine analogs were identified that induce selective intracellular target engagement leading to apoptosis and downregulate the prenylation of Rap-1A in MM, PDAC, and CRC cells. The C6-PyraP-BP inhibitor RB-07-16 was found to exhibit antitumor efficacy in xenograft mouse models of MM and PDAC, significantly reducing tumor growth without substantially increasing liver enzymes or causing significant histopathologic damage, usually associated with hepatotoxicity. RB-07-16 is a metabolically stable compound in cross-species liver microsomes, does not inhibit key CYP 450 enzymes, and exhibits good systemic circulation in rat. Collectively, the current studies provide encouraging support for further optimization of the pyrazolo[3,4-d]pyrimidine-based GGPPS inhibitors as potential human therapeutics for various cancers.


Subject(s)
Carcinoma, Pancreatic Ductal , Colorectal Neoplasms , Multiple Myeloma , Pancreatic Neoplasms , Humans , Mice , Rats , Animals , Geranylgeranyl-Diphosphate Geranylgeranyltransferase , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Pancreatic Neoplasms/pathology , Apoptosis , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Colorectal Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Xenograft Model Antitumor Assays
15.
Anal Chem ; 95(39): 14634-14642, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37739932

ABSTRACT

We have systematically evaluated the chromatographic behavior of post-translationally/chemically modified peptides using data spanning over 70 of the most relevant modifications. These retention properties were measured for standard bottom-up proteomic settings (fully porous C18 separation media, 0.1% formic acid as ion-pairing modifier) using collections of modified/nonmodified peptide pairs. These pairs were generated by spontaneous degradation, chemical or enzymatic treatment, analysis of synthetic peptides, or the cotranslational incorporation of noncanonical proline analogues. In addition, these measurements were validated using external data acquired for synthetic peptides and enzymatically induced citrullination. Working in units of hydrophobicity index (HI, % ACN) and evaluating the average retention shifts (ΔHI) represent the simplest approach to describe the effect of modifications from a didactic point of view. Plotting HI values for modified (y-axis) vs nonmodified (x-axis) counterparts generates unique slope and intercept values for each modification defined by the chemistry of the modifying moiety: its hydrophobicity, size, pKa of ionizable groups, and position of the altered residue. These composition-dependent correlations can be used for coarse incorporation of PTMs into models for prediction of peptide retention. More accurate predictions would require the development of specific sequence-dependent algorithms to predict ΔHI values.


Subject(s)
Peptides , Proteomics , Proteomics/methods , Chromatography, High Pressure Liquid/methods , Peptides/chemistry , Chromatography, Reverse-Phase/methods
17.
ACS Omega ; 8(37): 34008-34016, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744786

ABSTRACT

Leishmaniasis refers to a collection of diseases caused by protozoa from the Leishmania genus. These diseases, along with other parasitic afflictions, pose a significant public health issue, particularly given the escalating number of at-risk patients. This group includes immunocompromised individuals and those residing in impoverished conditions. The treatment of leishmaniasis is crucial, particularly in light of the mortality rate associated with nontreatment, which stands at 20-30,000 deaths per year globally. However, the therapeutic options currently available are limited, often ineffective, and potentially toxic. Consequently, the pursuit of new therapeutic alternatives is warranted. This study aims to design, synthesize, and evaluate the leishmanicidal activity of antimicrobial peptides functionalized with guanidine compounds and identify those with enhanced potency and selectivity against the parasite. Accordingly, three bioconjugates were obtained by using the solid-phase peptide synthesis protocol. Each proved to be more potent against intracellular amastigotes than their respective peptide or guanidine compounds alone and demonstrated higher selectivity to the parasites than to the host cells. Thus, the conjugation strategy employed with these compounds effectively contributes to the development of new molecules with leishmanicidal activity.

18.
Methods Mol Biol ; 2718: 99-110, 2023.
Article in English | MEDLINE | ID: mdl-37665456

ABSTRACT

Many proteolytic cleavage events cannot be covered with conventional trypsin-based N-terminomics workflows. These typically involve the derivatization of protein N-termini and Lys residues as an initial step, such that trypsin will cleave C-terminal of arginine but not lysine residues (ArgC-like cleavage). From 20,422 reviewed human protein sequences in Uniprot, 3597 have known N-terminal signal peptides. An in silico ArgC-like digestion of the corresponding 3597 mature protein sequences reveals that-even for these well-known and well-studied proteolytic events-trypsin-based N-terminomics workflows may miss up to 50% of signaling cleavage events as the corresponding neo-N-terminal peptides will have an unfavorable length of <7 (875 peptides) or >30 (911 peptides) amino acids. In this chapter, we provide a protocol that can be applied to all kinds of samples to improve access to this "inaccessible" N-terminome, by making use of the alternative, broad-specificity protease subtilisin for fast and reproducible digestion of proteins.


Subject(s)
Amino Acids , Peptide Hydrolases , Humans , Trypsin , Proteolysis , Amino Acid Sequence , Lysine
19.
Sensors (Basel) ; 23(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37765760

ABSTRACT

We demonstrate fiber optic sensors with temperature compensation for the accurate measurement of ethanol concentration in aqueous solutions. The device consists of two photonic crystal (PhC) fiber-tip sensors: one measures the ethanol concentration via refractive index (RI) changes and the other one is isolated from the liquid for the independent measurement of temperature. The probes utilize an optimized PhC design providing a Lorentzian-like, polarization-independent response, enabling a very low imprecision (pm-level) in the wavelength determination. By combining the information from the two probes, it is possible to compensate for the effect that the temperature has on the concentration measurement, obtaining more accurate estimations of the ethanol concentration in a broad range of temperatures. We demonstrate the simultaneous and single-point measurements of temperature and ethanol concentration in water, with sensitivities of 19 pm/°C and ∼53 pm/%, in the ranges of 25 °C to 55 °C and 0 to 50% (at 25 °C), respectively. Moreover, a maximum error of 1.1% in the concentration measurement, with a standard deviation of ≤0.8%, was obtained in the entire temperature range after compensating for the effect of temperature. A limit of detection as low as 0.08% was demonstrated for the concentration measurement in temperature-stable conditions.

20.
Breast Cancer Res ; 25(1): 99, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608351

ABSTRACT

BACKGROUND: Obesity increases breast cancer risk and breast cancer-specific mortality, particularly for people with estrogen receptor (ER)-positive tumors. Body mass index (BMI) is used to define obesity, but it may not be the best predictor of breast cancer risk or prognosis on an individual level. Adult weight gain is an independent indicator of breast cancer risk. Our previous work described a murine model of obesity, ER-positive breast cancer, and weight gain and identified fibroblast growth factor receptor (FGFR) as a potential driver of tumor progression. During adipose tissue expansion, the FGF1 ligand is produced by hypertrophic adipocytes as a stimulus to stromal preadipocytes that proliferate and differentiate to provide additional lipid storage capacity. In breast adipose tissue, FGF1 production may stimulate cancer cell proliferation and tumor progression. METHODS: We explored the effects of FGF1 on ER-positive endocrine-sensitive and resistant breast cancer and compared that to the effects of the canonical ER ligand, estradiol. We used untargeted proteomics, specific immunoblot assays, gene expression profiling, and functional metabolic assessments of breast cancer cells. The results were validated in tumors from obese mice and breast cancer datasets from women with obesity. RESULTS: FGF1 stimulated ER phosphorylation independently of estradiol in cells that grow in obese female mice after estrogen deprivation treatment. Phospho- and total proteomic, genomic, and functional analyses of endocrine-sensitive and resistant breast cancer cells show that FGF1 promoted a cellular phenotype characterized by glycolytic metabolism. In endocrine-sensitive but not endocrine-resistant breast cancer cells, mitochondrial metabolism was also regulated by FGF1. Comparison of gene expression profiles indicated that tumors from women with obesity shared hallmarks with endocrine-resistant breast cancer cells. CONCLUSIONS: Collectively, our data suggest that one mechanism by which obesity and weight gain promote breast cancer progression is through estrogen-independent ER activation and cancer cell metabolic reprogramming, partly driven by FGF/FGFR. The first-line treatment for many patients with ER-positive breast cancer is inhibition of estrogen synthesis using aromatase inhibitors. In women with obesity who are experiencing weight gain, locally produced FGF1 may activate ER to promote cancer cell metabolic reprogramming and tumor progression independently of estrogen.


Subject(s)
Breast Neoplasms , Fibroblast Growth Factor 1 , Receptors, Estrogen , Animals , Female , Mice , Estradiol , Estrogens , Fibroblast Growth Factor 1/metabolism , Ligands , Obesity/complications , Proteomics , Receptors, Estrogen/genetics , Weight Gain , Breast Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...