Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 141: 106922, 2023 12.
Article in English | MEDLINE | ID: mdl-37865056

ABSTRACT

The broad-spectrum antimicrobial ability of de novo designed amphiphilic antimicrobial peptides (AMPs) G(IIKK)3I-NH2 (G3) and C8-G(IIKK)2I-NH2 (C8G2) have been demonstrated. Nonetheless, their potential as anti-quorum-sensing (anti-QS) agents, particularly against the opportunistic pathogen Pseudomonas aeruginosa at subinhibitory concentrations, has received limited attention. In this study, we proved that treating P. aeruginosa PAO1 with both AMPs at subinhibitory concentrations led to significant inhibition of QS-regulated virulence factors, including pyocyanin, elastase, proteases, and bacterial motility. Additionally, the AMPs exhibited remarkable capabilities in suppressing biofilm formation and their elimination rate of mature biofilm exceeded 95%. Moreover, both AMPs substantially downregulated the expression of QS-related genes. CD analysis revealed that both AMPs induced structural alterations in the important QS-related protein LasR in vitro. Molecular docking results indicated that both peptides bind to the hydrophobic groove of the LasR dimer. Notably, upon mutating key binding sites (D5, E11, and F87) to Ala, the binding efficiency of LasR to both peptides significantly decreased. We revealed the potential of antibacterial peptides G3 and C8G2 at their sub-MIC concentrations as QS inhibitors against P. aeruginosa and elucidated their action mechanism. These findings contribute to our understanding of the therapeutic potential of these peptides in combating P. aeruginosa infections by targeting the QS system.


Subject(s)
Antimicrobial Peptides , Pseudomonas aeruginosa , Pseudomonas aeruginosa/physiology , Molecular Docking Simulation , Quorum Sensing , Biofilms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism
2.
J Colloid Interface Sci ; 623: 368-377, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35594595

ABSTRACT

HYPOTHESIS: Acyl-l-carnitines (CnLCs) are potentially important as biosurfactants in drug delivery and tissue engineering due to their good biocompatibility. However, little is currently known about the basic interfacial behavior underlying their technological applications. Following our previous characterization of their solution aggregation and adsorption at the air/water interface, this work examines how they adsorb at the hydrophilic solid/liquid interface. EXPERIMENTS: As the SiO2/water interface has served as the model substrate for many interfacial adsorption studies, so it has been used in this work as the solid substrate to facilitate dynamic adsorption by spectroscopic ellipsometry (SE) and structural determination of the adsorbed layers by neutron reflection (NR) under different conditions at the SiO2/water interface from a group of CnLC (n = 12, 14, and 16). FINDINGS: CnLC surfactants are zwitterionic at neutral pH. They reached saturated adsorption above their critical micellar concentrations (CMCs) and formed a sandwich bilayer with a head-tail-head structure at the hydrophilic SiO2/water interface. The total thicknesses of the adsorbed layers at CMC were found to be 33 ± 2, 35 ± 2, and 37 ± 2 Å for C12LC, C14LC, and C16LC, respectively, with their inner and outer head layers remaining similar but the thickness of the interdigitated middle layer increasing with acyl chain length. As the solution becomes acidic, the carboxyl groups become protonated and the l-carnitine heads are net positively charged, resulting in increased repulsion between the head groups. In this situation, the CnLC surfactants are adsorbed as distinct aggregates to reduce repulsive interaction, resulting in reduced surfactant volume fraction and layer thickness. However, a high ionic strength can screen the repulsive interaction and enhance the adsorbed amount, effectively diminishing the impact of pH. This information provides a useful basis for exploring the technological applications of CnLCs involving a solid substrate.


Subject(s)
Silicon Dioxide , Surface-Active Agents , Adsorption , Carnitine , Silicon Dioxide/chemistry , Surface-Active Agents/chemistry , Water/chemistry
3.
J Colloid Interface Sci ; 591: 106-114, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33592522

ABSTRACT

HYPOTHESIS: l-carnitine plays a crucial role in the cellular production of energy by transporting fatty acids into mitochondria. Acylated l-carnitines are amphiphilic and if appropriate physical properties were demonstrated, they could replace many currently used surfactants with improved biocompatibility and health benefits. EXPERIMENTS: This work evaluated the surface adsorption of lauroyl-l-carnitine (C12LC) and its aggregation behavior. The size and shape of the aggregates of C12LC surfactant were studied at different temperatures, concentrations, pH and ionic strength by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). Surface tension measurements were carried out to determine the critical micellar concentration (CMC) of C12LC. Combining with the Gibbs equation, the surface excess at different concentrations could be determined. Neutron reflection (NR) was used to determine the structure of the adsorbed layer at the air/water interface with the help of isotopic contrast variations. FINDINGS: At pH 7, the limiting area per molecule (ACMC) of the zwitterionic C12LC adsorbed layer at the air/water interface was found to be 46 Å2 from surface tension and neutron reflection, smaller than the values of C12PC, C12E5, DTAB, C12C4betaine and C12C8betaine but close to that of SDS. A pronounced surface tension minimum at pH 2 at the low ionic strength was linked to a minimum value of area per molecule of about 30 Å2, indicating the competitive adsorption from traces of lauric acid produced by hydrolysis of C12LC. As the concentration increased, area per molecule reached a plateau of 37-39 Å2, indicating the dissolution of the more surface-active lauric acid into the micelles of C12LC. DLS and SANS showed that the size and shape of micelles had little response to temperature, concentration, ionic strength or pH. The SANS profiles measured under 3 isotopic contrasts could be well fitted by the core-shell model, giving a spherical core radius of 15.7 Å and a shell thickness of 10.5 Å. The decrease of pH led to more protonated carboxyl groups and more positively charged micelles, but the micellar structures remained unchanged, in spite of their stronger interaction. These features make C12LC potentially attractive as a solubilizing agent.


Subject(s)
Carnitine , Surface-Active Agents , Adsorption , Carnitine/analogs & derivatives , Laurates , Micelles , Surface Tension
4.
J Colloid Interface Sci ; 556: 650-657, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31499436

ABSTRACT

HYPOTHESIS: Nonionic surfactants are used as adjuvants in agri-sprays to stabilise pesticides, but what happens when pesticide-loaded micelles are brought into direct contact with plant leaves? As pesticide solubilisation dehydrates the micellar shell and increases the effective hydrophobicity of the surfactant, we hypothesise that these micelles would uptake plant waxes and alter the amount of pesticide solubilized as a result of the re-equilibrating process. EXPERIMENTS: The solubility of the pesticide cyprodinil (CP) and its effect on the shape of hexaethylene glycol monododecyl ether (C12E6) micelles were studied using changes in cloud point, nuclear magnetic resonance (NMR), cryogenic transmission electron microscopy (Cryo-TEM) and small-angle neutron scattering (SANS). Similarly, the solubility of wheat leaf waxes was examined, as was the effect of adding leaf waxes to pre-dissolved cyprodinil in micellar C12E6. FINDINGS: Wax solubilisation caused pesticide release and shell hydration, and shortened the length of the cylindrical micelles of the CP loaded C12E6. Temperature increase led to a significant rise in the amount of the dissolved waxes, increased pesticide release, increased micellar length, and caused shrinkage and dehydration of the shell. This study indicates that agrochemical sprays are capable of dissolving leaf waxes, and may trigger pesticide release from surfactant micelles upon contact with plant surfaces.


Subject(s)
Micelles , Pesticides , Plant Leaves/parasitology , Pyrimidines , Triticum/parasitology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Pesticides/chemistry , Pesticides/pharmacokinetics , Pesticides/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Solubility , Waxes
SELECTION OF CITATIONS
SEARCH DETAIL
...