Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 98(1)2022 02 21.
Article in English | MEDLINE | ID: mdl-35142841

ABSTRACT

Symbioses are significant drivers of insect evolutionary ecology. Despite recent findings that these associations can emerge from environmentally derived bacterial precursors, there is still little information on how these potential progenitors of insect symbionts circulate in trophic systems. Serratia symbiotica represents a valuable model for deciphering evolutionary scenarios of bacterial acquisition by insects, as its diversity includes gut-associated strains that retained the ability to live independently of their hosts, representing a potential reservoir for symbioses emergence. Here, we conducted a field study to examine the distribution and diversity of S. symbiotica found in aphid populations, and in different compartments of their surrounding environment. Twenty % of aphid colonies were infected with S. symbiotica, including a wide diversity of strains with varied tissue tropism corresponding to different lifestyle. We also showed that the prevalence of S. symbiotica is influenced by seasonal temperatures. We found that S. symbiotica was present in non-aphid species and in host plants, and that its prevalence in these samples was higher when associated aphid colonies were infected. Furthermore, phylogenetic analyses suggest the existence of horizontal transfers between the different trophic levels. These results provide a new picture of the pervasiveness of an insect symbiont in nature.


Subject(s)
Aphids , Animals , Aphids/microbiology , Phylogeny , Serratia/genetics , Symbiosis
2.
Insects ; 12(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34680624

ABSTRACT

Testing fluctuating rather than constant temperatures is likely to produce more realistic datasets, as they are ecologically more similar to what arthropods experience in nature. In this study, we evaluated the impact of three constant thermal regimes (7, 12, and 17 °C) and one fluctuating thermal regime (7-17 °C with a mean of 12 °C) on fitness indicators in the rosy apple aphid Dysaphis plantaginea, a major pest of apple orchards, and the parasitoid Aphidius matricariae, one of its natural enemies used in mass release biological control strategies. For some-but not all-traits, the fluctuating 7-17 °C regime was beneficial to insects compared to the constant 12 °C regime. Both aphid and parasitoid development times were shortened under the fluctuating regime, and there was a clear trend towards an increased longevity under the fluctuating regime. The fecundity, mass, and size were affected by the mean temperature, but only the mass of aphids was higher at 7-17 °C than at a constant 12 °C. Parasitism rates, but not emergence rates, were higher under the fluctuating regime than under the constant 12 °C regime. Results are discussed within the framework of insect thermal ecology and Jensen's inequality. We conclude that incorporating thermal fluctuations in ecological studies could allow for the more accurate consideration of how temperature affects host-parasitoid interactions and insect responses to temperature change over time.

3.
J Plant Physiol ; 254: 153272, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32980639

ABSTRACT

Root chicory (Cichorium intybus var. sativum) is a biennial plant that requires vernalization for flowering initiation. However, we previously showed that heat can induce root chicory flowering independently of vernalization. To deepen our understanding of the temperature control of flowering in this species, we investigated the impact of heat, vernalization and their interaction on flowering induction and reproductive development. Heat increased the flowering percentage of non-vernalized plants by 25% but decreased that of vernalized plants by 65%. After bolting, heat negatively affected inflorescence development, decreasing the proportion of sessile capitula on the floral stem by 40% and the floral stem dry weight by 42% compared to control conditions, although it did not affect the number of flowers per capitulum. Heat also decreased flower fertility: pollen production, pollen viability and stigma receptivity were respectively 25%, 3% and 82% lower in heat-treated plants than in untreated control plants. To investigate the genetic control of flowering by temperature in root chicory, we studied the expression of the FLC-LIKE1 (CiFL1) gene in response to heat; CiFL1 was previously shown to be repressed by vernalization in chicory and to repress flowering when over-expressed in Arabidopsis. Heat treatment increased CiFL1 expression, as well as the percentage of bolting and flowering shoot apices. Heat thus has a dual impact on flowering initiation in root chicory since it appears to both induce flowering and counteract vernalization. However, after floral transition, heat has a primarily negative impact on root chicory reproduction.


Subject(s)
Cichorium intybus/growth & development , Flowers/growth & development , Cichorium intybus/physiology , Cold Temperature , Fertility , Hot Temperature
4.
Environ Sci Pollut Res Int ; 25(18): 17444-17456, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29656355

ABSTRACT

Data regarding NaCl impact on halophyte plant species exposed to a polymetallic contamination remain scarce. Seedlings of the salt marsh species Kosteletzkya pentacarpos were simultaneously exposed to cadmium (10 µM) and zinc (100 µM) in the absence or presence of 50 mM NaCl. Heavy metal exposure reduced plant growth and increased Cd and Zn concentrations in all organs. Cd and Zn accumulation reduced net photosynthesis in relation to stomatal closure, decreased in chlorophyll concentration and alteration in chlorophyll fluorescence-related parameters. Salinity reduced Cd and Zn bioaccumulation and translocation, with a higher impact on Cd than Zn. It mitigated the deleterious impact of heavy metals on photosynthetic parameters. NaCl reduced the heavy metal-induced oxidative stress assessed by malondialdehyde, carbonyl, and H2O2 concentration. Subcellular distribution revealed that Cd mainly accumulated in the cell walls, but NaCl increased it in the cytosol fraction in the leaf and in the metal-rich granule fraction in the roots. It had no impact on Zn subcellular distribution. The additional NaCl contributed to a higher sequestration of Cd on phytochelatins and stimulated glutathione synthesis. The positive impact of NaCl on K. pentacarpos response to polymetallic pollution made this species a promising candidate for revegetation of heavy metal-contaminated salt areas.


Subject(s)
Hydrogen Peroxide/chemistry , Malvaceae/chemistry , Metals, Heavy/chemistry , Salt-Tolerant Plants/metabolism , Seedlings/metabolism , Zinc/chemistry , Cadmium , Chlorophyll/metabolism , Photosynthesis , Plant Development , Plant Leaves/metabolism , Plant Roots/metabolism , Salinity , Wetlands
5.
Nature ; 463(7282): 775-80, 2010 Feb 11.
Article in English | MEDLINE | ID: mdl-20148032

ABSTRACT

Insulin from the beta-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor neurogenin 3 (Neurog3) initiates the differentiation of the beta-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurog3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate beta-cells for patients with diabetes.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , Insulin/biosynthesis , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA Mutational Analysis , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Diabetes Mellitus/congenital , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Embryo, Mammalian/metabolism , Female , Fetus/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genes, Recessive/genetics , Genetic Testing , Humans , Infant, Newborn , Islets of Langerhans/embryology , Male , Mice , NIH 3T3 Cells , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organ Specificity , Regulatory Factor X Transcription Factors , Syndrome , Transcription Factors/deficiency , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...