Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neurophysiol Clin ; 47(5-6): 371-391, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29169769

ABSTRACT

OBJECTIVE: Due to its high temporal resolution, electroencephalography (EEG) has become a broadly-used technology for real-time brain monitoring applications such as neurofeedback (NFB) and brain-computer interfaces (BCI). However, since EEG signals are prone to artifacts, denoising is a crucial step that enables adequate subsequent data processing and interpretation. The aim of this study is to compare manual denoising to unsupervised online denoising, which is essential to real-time applications. METHODS: Denoising EEG for real-time applications requires the implementation of unsupervised and online methods. In order to permit genericity, these methods should not rely on electrooculography (EOG) traces nor on temporal/spatial templates of the artifacts. Two blind source separation (BSS) methods are analyzed in this paper with the aim of automatically correcting online eye-blink artifacts: the algorithm for multiple unknown signals extraction (AMUSE) and the approximate joint diagonalization of Fourier cospectra (AJDC). The chosen gold standard is a manual review of the EEG database carried out retrospectively by a human operator. Comparison is carried out using the spectral properties of the continuous EEG and event-related potentials (ERP). RESULTS AND CONCLUSION: The AJDC algorithm addresses limitations observed in AMUSE and outperforms it. No statistical difference is found between the manual and automatic approaches on a database composed of 15 healthy individuals, paving the way for an automated, operator-independent, and real-time eye-blink correction technique.


Subject(s)
Blinking/physiology , Brain/physiology , Electroencephalography , Signal Processing, Computer-Assisted , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Brain-Computer Interfaces , Child , Electroencephalography/methods , Electrooculography/methods , Humans , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...