Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 38(11)2019 06 03.
Article in English | MEDLINE | ID: mdl-31000523

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with strong immunosuppressive activity that promote tumor growth. In this study, we describe a mechanism by which cancer cells control MDSCs in human cancers by upregulating TRF2, a protein required for telomere stability. Specifically, we showed that the TRF2 upregulation in cancer cells has extratelomeric roles in activating the expression of a network of genes involved in the biosynthesis of heparan sulfate proteoglycan, leading to profound changes in glycocalyx length and stiffness, as revealed by atomic force microscopy. This TRF2-dependent regulation facilitated the recruitment of MDSCs, their activation via the TLR2/MyD88/IL-6/STAT3 pathway leading to the inhibition of natural killer recruitment and cytotoxicity, and ultimately tumor progression and metastasis. The clinical relevance of these findings is supported by our analysis of cancer cohorts, which showed a correlation between high TRF2 expression and MDSC infiltration, which was inversely correlated with overall patient survival.


Subject(s)
Glycocalyx/metabolism , Neoplasms/immunology , Neoplasms/pathology , Telomeric Repeat Binding Protein 2/physiology , Tumor Escape/physiology , Animals , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Glycocalyx/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/physiology , NIH 3T3 Cells , Neoplasms/genetics , Neoplasms/mortality , Telomere/metabolism , Telomeric Repeat Binding Protein 2/genetics , Tumor Escape/genetics
2.
Nat Rev Genet ; 15(7): 491-503, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24913665

ABSTRACT

Telomeres protect chromosome ends from degradation and inappropriate DNA damage response activation through their association with specific factors. Interestingly, these telomeric factors are able to localize outside telomeric regions, where they can regulate the transcription of genes involved in metabolism, immunity and differentiation. These findings delineate a signalling pathway by which telomeric changes control the ability of their associated factors to regulate transcription. This mechanism is expected to enable a greater diversity of cellular responses that are adapted to specific cell types and telomeric changes, and may therefore represent a pivotal aspect of development, ageing and telomere-mediated diseases.


Subject(s)
DNA Repair , Signal Transduction/genetics , Telomere/chemistry , Transcription, Genetic , Apoptosis , Cellular Senescence , DNA Damage , Gene Expression Regulation , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Shelterin Complex , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Telomeric Repeat Binding Protein 2/genetics , Telomeric Repeat Binding Protein 2/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
EMBO Rep ; 14(4): 356-63, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23429341

ABSTRACT

The DNA-binding protein TRF2 is essential for telomere protection and chromosome stability in mammals. We show here that TRF2 expression is activated by the Wnt/ß-catenin signalling pathway in human cancer and normal cells as well as in mouse intestinal tissues. Furthermore, ß-catenin binds to TRF2 gene regulatory regions that are functional in a luciferase transactivating assay. Reduced ß-catenin expression in cancer cells triggers a marked increase in telomere dysfunction, which can be reversed by TRF2 overexpression. We conclude that the Wnt/ß-catenin signalling pathway maintains a level of TRF2 critical for telomere protection. This is expected to have an important role during development, adult stem cell function and oncogenesis.


Subject(s)
Gene Expression Regulation , Telomere Homeostasis , Telomeric Repeat Binding Protein 2/metabolism , Wnt Signaling Pathway , Animals , Binding Sites , Female , Gene Expression , HCT116 Cells , Humans , Male , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Telomeric Repeat Binding Protein 2/genetics , Transcriptome , beta Catenin/metabolism
4.
Genome Res ; 21(5): 798-810, 2011 May.
Article in English | MEDLINE | ID: mdl-21451113

ABSTRACT

Emerging evidence suggests that microRNAs (miRNAs), an abundant class of ∼22-nucleotide small regulatory RNAs, play key roles in controlling the post-transcriptional genetic programs in stem and progenitor cells. Here we systematically examined miRNA expression profiles in various adult tissue-specific stem cells and their differentiated counterparts. These analyses revealed miRNA programs that are common or unique to blood, muscle, and neural stem cell populations and miRNA signatures that mark the transitions from self-renewing and quiescent stem cells to proliferative and differentiating progenitor cells. Moreover, we identified a stem/progenitor transition miRNA (SPT-miRNA) signature that predicts the effects of genetic perturbations, such as loss of PTEN and the Rb family, AML1-ETO9a expression, and MLL-AF10 transformation, on self-renewal and proliferation potentials of mutant stem/progenitor cells. We showed that some of the SPT-miRNAs control the self-renewal of embryonic stem cells and the reconstitution potential of hematopoietic stem cells (HSCs). Finally, we demonstrated that SPT-miRNAs coordinately regulate genes that are known to play roles in controlling HSC self-renewal, such as Hoxb6 and Hoxa4. Together, these analyses reveal the miRNA programs that may control key processes in normal and aberrant stem and progenitor cells, setting the foundations for dissecting post-transcriptional regulatory networks in stem cells.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/metabolism , Gene Expression Regulation/genetics , MicroRNAs/metabolism , Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Embryonic Stem Cells/cytology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Mice , MicroRNAs/genetics , Mutation , Myoblasts/cytology , Myoblasts/metabolism , Neural Stem Cells , Organ Specificity , Stem Cells/cytology
5.
Aging (Albany NY) ; 3(2): 108-24, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21386132

ABSTRACT

In adult mammals, neural stem cells (NSCs) generate new neurons that are important for specific types of learning and memory. Controlling adult NSC number and function is fundamental for preserving the stem cell pool and ensuring proper levels of neurogenesis throughout life. Here we study the importance of the microRNA gene cluster miR-106b~25 (miR-106b, miR-93, and miR-25) in primary cultures of neural stem/progenitor cells (NSPCs) isolated from adult mice. We find that knocking down miR-25 decreases NSPC proliferation, whereas ectopically expressing miR-25 promotes NSPC proliferation. Expressing the entire miR-106b~25 cluster in NSPCs also increases their ability to generate new neurons. Interestingly, miR-25 has a number of potential target mRNAs involved in insulin/insulin-like growth factor-1 (IGF) signaling, a pathway implicated in aging. Furthermore, the regulatory region of miR-106b~25 is bound by FoxO3, a member of the FoxO family of transcription factors that maintains adult stem cells and extends lifespan downstream of insulin/IGF signaling. These results suggest that miR-106b~25 regulates NSPC function and is part of a network involving the insulin/IGF-FoxO pathway, which may have important implications for the homeostasis of the NSC pool during aging.


Subject(s)
Cell Differentiation/genetics , Cell Proliferation , MicroRNAs/genetics , Multigene Family , Neural Stem Cells/physiology , Neurogenesis/physiology , Animals , Cells, Cultured , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Insulin/metabolism , Mice , MicroRNAs/metabolism , Neural Stem Cells/cytology , Signal Transduction/physiology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
6.
Stem Cells Dev ; 20(7): 1233-46, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20954847

ABSTRACT

Embryonic stem (ES) cells differentiate in vitro into all cell lineages. We previously found that the p38 mitogen activated kinase (p38MAPK) pathway controls the commitment of ES cells toward either cardiomyogenesis (p38 on) or neurogenesis (p38 off ). In this study, we show that p38α knock-out ES cells do not differentiate into cardiac, endothelial, smooth muscle, and skeletal muscle lineages. Reexpression of p38MAPK in these cells partially rescues their mesodermal differentiation defects and corrects the high level of spontaneous neurogenesis of knock-out cells. Wild-type ES cells were treated with a p38MAPK-specific inhibitor during the differentiation process. These experiments allowed us to identify 2 early independent successive p38MAPK functions in the formation of mesodermal lineages. Further, the first one correlates with the regulation of the expression of Brachyury, an essential mesodermal-specific transcription factor, by p38MAPK. In conclusion, by genetic and biochemical approaches, we demonstrate that p38MAPK activity is essential for the commitment of ES cell into cardiac, endothelial, smooth muscle, and skeletal muscle mesodermal lineages.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Mesoderm/cytology , Mitogen-Activated Protein Kinase 14/metabolism , Animals , Blotting, Western , Cells, Cultured , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Fetal Proteins/genetics , Fetal Proteins/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Regulation , Gene Knockout Techniques , Imidazoles/pharmacology , Mesoderm/metabolism , Mice , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Muscle Development , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
7.
Cell Stem Cell ; 5(5): 527-39, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19896443

ABSTRACT

In the nervous system, neural stem cells (NSCs) are necessary for the generation of new neurons and for cognitive function. Here we show that FoxO3, a member of a transcription factor family known to extend lifespan in invertebrates, regulates the NSC pool. We find that adult FoxO3(-/-) mice have fewer NSCs in vivo than wild-type counterparts. NSCs isolated from adult FoxO3(-/-) mice have decreased self-renewal and an impaired ability to generate different neural lineages. Identification of the FoxO3-dependent gene expression profile in NSCs suggests that FoxO3 regulates the NSC pool by inducing a program of genes that preserves quiescence, prevents premature differentiation, and controls oxygen metabolism. The ability of FoxO3 to prevent the premature depletion of NSCs might have important implications for counteracting brain aging in long-lived species.


Subject(s)
Adult Stem Cells/metabolism , Brain/metabolism , Forkhead Transcription Factors/metabolism , Neurons/metabolism , Oxygen/metabolism , Adult Stem Cells/cytology , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cells, Cultured , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Homeostasis , Mice , Mice, Knockout , Neurogenesis , Neurons/cytology
8.
Semin Cell Dev Biol ; 16(4-5): 612-22, 2005.
Article in English | MEDLINE | ID: mdl-16087370

ABSTRACT

The Notch signaling pathway is an evolutionarily conserved pathway that is critical for tissue morphogenesis during development, but is also involved in tissue maintenance and repair in the adult. In skeletal muscle, regulation of Notch signaling is involved in somitogenesis, muscle development, and the proliferation and cell fate determination of muscle stems cells during regeneration. During each of these processes, the spatial and temporal control of Notch signaling is essential for proper tissue formation. That control is mediated by a series of regulatory proteins and protein complexes that enhance or inhibit Notch signaling by regulating protein processing, localization, activity, and stability. In this review, we focus on the regulation of Notch signaling during postnatal muscle regeneration when muscle stem cells ("satellite cells") must activate, proliferate, progress along a myogenic lineage pathway, and ultimately differentiate to form new muscle. We review the regulators of Notch signaling, such as Numb and Deltex, that have documented roles in myogenesis as well as other regulators that may play a role in modulating Notch signaling during satellite cell activation and postnatal myogenesis.


Subject(s)
Animals, Newborn/physiology , Mesenchymal Stem Cells/physiology , Muscle Development/physiology , Receptors, Notch/physiology , Satellite Cells, Skeletal Muscle/physiology , Signal Transduction/physiology , Animals , Animals, Newborn/metabolism , Humans , Receptors, Notch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...