Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(20): 8014-9, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23620520

ABSTRACT

Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using two unique techniques, namely a "bead-mobility" technique and a "poke-flow" technique, in conjunction with simulations of fluid flow, the viscosity of the water-soluble component of SOM produced by α-pinene ozonolysis is quantified for 20- to 50-µm particles at 293-295 K. The viscosity is comparable to that of honey at 90% relative humidity (RH), similar to that of peanut butter at 70% RH, and at least as viscous as bitumen at ≤30% RH, implying that the studied SOM ranges from liquid to semisolid or solid across the range of atmospheric RH. These data combined with simple calculations or previous modeling studies are used to show the following: (i) the growth of SOM by the exchange of organic molecules between gas and particle may be confined to the surface region of the particles for RH ≤ 30%; (ii) at ≤30% RH, the particle-mass concentrations of semivolatile and low-volatility organic compounds may be overpredicted by an order of magnitude if instantaneous equilibrium partitioning is assumed in the bulk of SOM particles; and (iii) the diffusivity of semireactive atmospheric oxidants such as ozone may decrease by two to five orders of magnitude for a drop in RH from 90% to 30%. These findings have possible consequences for predictions of air quality, visibility, and climate.


Subject(s)
Monoterpenes/chemistry , Aerosols , Air Pollutants , Atmosphere , Bicyclic Monoterpenes , Climate , Environmental Monitoring/methods , Gases , Nitrogen/chemistry , Oxygen/chemistry , Ozone/chemistry , Particle Size , Solubility , Temperature , Viscosity , Volatile Organic Compounds , Volatilization , Water/chemistry
2.
Proc Natl Acad Sci U S A ; 109(33): 13188-93, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22847443

ABSTRACT

A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5).

3.
J Phys Chem A ; 116(25): 6664-74, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22702447

ABSTRACT

A new method for measuring gas-phase and aerosol reaction kinetics is described in which the gas flow, itself, acts as a "virtual injector" continuously increasing the contact time in analogy to conventional movable-injector kinetics techniques. In this method a laser is directed down the length of a flow tube, instantly initiating reaction by photodissociation of a precursor species at every point throughout the flow tube. Key tropospheric reactants such as OH, Cl, NO(3), and O(3) can be generated with nearly uniform concentrations along the length of the flow tube in this manner using 355 nm radiation from the third harmonic of a Nd:YAG laser. As the flow travels down the flow tube, both the gas-phase and particle-phase species react with the photogenerated radicals or O(3) for increasingly longer time before exiting and being detected. The advantages of this method are that (1) any wall loss of gas-phase and particle species is automatically accounted for, (2) the reactions are conducted under nearly pseudo-first-order conditions, (3) the progress of the reaction is followed as a continuous function of reaction time instead of reactant concentration, (4) data collection is quick with an entire decay trace being collected in as little as 1 min, (5) relative rates of several species can be measured simultaneously, and (6) bimolecular rate constants at least as small as k = 10(-17) (cm(3)/molecule)/s, or aerosol uptake coefficients at least as small as γ = 10(-4), can be measured. Using the virtual injector technique with an aerosol chemical ionization mass spectrometer (CIMS) as a detector, examples of gas-phase relative rates and uptake by oleic acid particles are given for OH, Cl, NO(3), and O(3) reactions with most agreeing to within 20% of published values, where available.

SELECTION OF CITATIONS
SEARCH DETAIL
...