Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Mater ; 35(2): 692-699, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-37520114

ABSTRACT

Zeolitic imidazolate frameworks (ZIFs) have been profusely used as catalysts for inserting CO2 into organic epoxides (i.e., epichlorohydrin) through cycloaddition. Here, we demonstrate that these materials suffer from irreversible degradation by leaching. To prove this, we performed the reactions and analyzed the final reaction mixtures by elemental analysis and the resulting materials by different microscopies. We found that the difference in catalytic activity between three ZIF-67 and one ZIF-L catalysts was related to the rate at which the materials degraded. Particularly, the {100} facet leaches faster than the others, regardless of the material used. The catalytic activity strongly depended on the amount of leached elements in the liquid phase since these species are extremely active. Our work points to the instability of these materials under relevant reaction conditions and the necessity of additional treatments to improve their stability.

2.
ACS Appl Mater Interfaces ; 13(41): 48753-48763, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34623144

ABSTRACT

Carbon-based solar photocatalysts for overall water splitting could provide H2 as an energy vector in a clean and sustainable way. Band engineering to align energy levels can be achieved, among other ways, by doping. Herein, it is shown that phosphorous doping of microporous graphitic carbons derived from pyrolysis of α-, ß-, and γ-cyclodextrin increases the valence band edge energy of the material, and the energy value of the conduction band decreases with the P content. In this way, P doping increases the activity of these metal-free materials in photocatalytic overall water splitting under simulated sunlight and visible-light illumination. The optimal P-doped photocatalyst in the absence of any metal as a cocatalyst affords, after 4 h of irradiation with simulated sunlight, a H2 production of 2.5 mmol of H2 × gcatalyst-1 in the presence of methanol as the sacrificial agent or 225 µmol of H2 × gcatalyst-1 from pure H2O.

3.
Nanomaterials (Basel) ; 10(5)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349364

ABSTRACT

Evidence by selected area diffraction patterns shows the successful preparation of large area (cm × cm) MoS2/graphene heterojunctions in coincidence of the MoS2 and graphene hexagons (superlattice). The electrodes of MoS2/graphene in superlattice configuration show improved catalytic activity for H2 and O2 evolution with smaller overpotential of +0.34 V for the overall water splitting when compared with analogous MoS2/graphene heterojunction with random stacking.

4.
Nanoscale ; 11(6): 2981-2990, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30698195

ABSTRACT

Herein, a reliable procedure for the preparation of graphene-boron nitride superlattices, either as films or powders, consisting of the pyrolysis at 900 °C of polystyrene embedded pre-formed boron nitride single sheets is reported. The procedure can serve to prepare large area films (cm × cm) of this superlattice on quartz, copper foil and ceramics. Selected area electron diffraction patterns at every location on the films show the occurrence of the graphene-boron nitride superlattice all over the film. The procedure can also be applied to the preparation of powdered samples on a gram scale. Comparison with other materials indicates that the superlattice appears spontaneously as the growing graphene sheets develop, due to the templating effect of pre-existing boron nitride single sheets. Since the characteristic boron nitride emission in the visible region is completely quenched in the superlattice configuration, it is proposed that fluorescence microscopy can be used as a routine technique to determine the occurrence of superlattice in large area films. Electrodes of this material show an unforeseen catalytic activity for oxygen reduction reaction and exhibit a decrease of the heterojunction-electrolyte interphase electrical resistance.

5.
Nanomaterials (Basel) ; 9(1)2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30654444

ABSTRACT

Polystyrene as a thin film on arbitrary substrates or pellets form defective graphene/graphitic films or powders that can be dispersed in water and organic solvents. The materials were characterized by visible absorption, Raman and X-ray photoelectron spectroscopy, electron and atomic force microscopy, and electrochemistry. Raman spectra of these materials showed the presence of the expected 2D, G, and D peaks at 2750, 1590, and 1350 cm-1, respectively. The relative intensity of the G versus the D peak was taken as a quantitative indicator of the density of defects in the G layer.

SELECTION OF CITATIONS
SEARCH DETAIL