Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 20(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35621959

ABSTRACT

The valorization of side streams from fishery and aquaculture value-chains is a valuable solution to address one of the challenges of the circular economy: turning wastes into profit. Side streams produced after filleting of sea cage fattened bluefin tuna (Thunnus thynnus) were analyzed for proximate composition and fatty acid profile to evaluate the possibility of producing tuna oil (TO) as a valuable source of ω-3 polyunsaturated fatty acids (PUFA) and testing its bioactivity in vitro. Ethyl esters of total fatty acids (TFA), obtained from TO, were pre-enriched by urea complexation (PUFA-Ue) and then enriched by short path distillation (SPD) up to almost 85% of the PUFA fraction (PUFA-SPe). The bioactivity of TFA, PUFA-SPe, and ethyl esters of depleted PUFA (PUFA-SPd) were tested in vitro, through analysis of lipid metabolism genes, in gilthead sea bream (Sparus aurata) fibroblast cell line (SAF-1) exposed to oils. TFA and PUFA-SPd upregulated transcription factors (pparß and pparγ) and lipid metabolism-related genes (D6D, fas, fabp, fatp1, and cd36), indicating the promotion of adipogenesis. PUFA-SPe treated cells were similar to control. PUFA-SPe extracted from farmed bluefin tuna side streams could be utilized in fish feed formulations to prevent excessive fat deposition, contributing to improving both the sustainability of aquaculture and the quality of its products.


Subject(s)
Fatty Acids, Omega-3 , Sea Bream , Animals , Esters/metabolism , Fatty Acids/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated/metabolism , Tuna/metabolism
2.
Antioxidants (Basel) ; 11(2)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35204292

ABSTRACT

Phaeodactylum tricornutum (Bacillariophyta) is a worldwide-distributed diatom with the ability to adapt and survive in different environmental habitats and nutrient-limited conditions. In this research, we investigated the growth performance, the total lipids productivity, the major categories of fatty acids, and the antioxidant content in P. tricornutum subjected for 15 days to nitrogen deprivation (N-) compared to standard culture conditions (N+). Furthermore, genes and pathways related to lipid biosynthesis (i.e., glucose-6-phosphate dehydrogenase, acetyl-coenzyme A carboxylase, citrate synthase, and isocitrate dehydrogenase) and photosynthetic activity (i.e., ribulose-1,5-bisphospate carboxylase/oxygenase and fucoxanthin-chlorophyll a/c binding protein B) were investigated through molecular approaches. P. tricornutum grown under starvation condition (N-) increased lipids production (42.5 ± 0.19 g/100 g) and decreased secondary metabolites productivity (phenolic content: 3.071 ± 0.17 mg GAE g-1; carotenoids: 0.35 ± 0.01 mg g-1) when compared to standard culture conditions (N+). Moreover, N deprivation led to an increase in the expression of genes involved in fatty acid biosynthesis and a decrease in genes related to photosynthesis. These results could be used as indicators of nitrogen limitation for environmental or industrial monitoring of P. tricornutum.

3.
Mar Drugs ; 19(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34677459

ABSTRACT

The marine environment is a generous source of biologically active compounds useful for human health. In 50 years, about 25,000 bioactive marine compounds have been identified, with an increase of 5% per year. Peculiar feature of algae and plants is the production of secondary metabolites, such as polyphenols, synthesized as a form of adaptation to environmental stress. Posidonia oceanica is a Mediterranean endemic and dominant seagrass and represents a biologically, ecologically and geologically important marine ecosystem. Within this study, methanolic and ethanolic extracts were generated from fresh and dried Posidonia oceanica leaves, with the aim to employ and valorize the beach cast leaves. The best yield and antioxidant activity (polyphenols content equal to 19.712 ± 0.496 mg GAE/g and DPPH IC50 of 0.090 µg/µL.) were recorded in 70% ethanol extracts (Gd-E4) obtained from leaves dried for two days at 60 °C and ground four times. HPLC analyses revealed the presence of polyphenols compounds (the most abundant of which was chicoric acid) with antioxidant and beneficial properties. Bioactive properties of the Gd-E4 extracts were evaluated in vitro using fibroblast cells line (HS-68), subjected to UV induced oxidative stress. Pre-treatment of cells with Gd-E4 extracts led to significant protection against oxidative stress and mortality associated with UV exposure, thus highlighting the beneficial properties of antioxidants compounds produced by these marine plants against photo damage, free radicals and associated negative cellular effects. Beach cast leaves selection, processing and extraction procedures, and the in vitro assay results suggested the potentiality of a sustainable approach for the biotechnological exploitation of this resource and could serve a model for other marine resources.


Subject(s)
Alismatales , Antioxidants/pharmacology , Plant Extracts/pharmacology , Antioxidants/chemistry , Aquatic Organisms , Biphenyl Compounds , Ecosystem , Fibroblasts/drug effects , Humans , Mediterranean Sea , Oxidative Stress/drug effects , Picrates , Plant Extracts/chemistry , Plant Leaves
4.
Mar Drugs ; 19(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803687

ABSTRACT

This study shows a pilot scale protocol aimed to obtain an omega 3-enriched oil after the processing of farmed gilthead sea bream viscera (SBV); this was oil was tested in vitro for bioactivity, attesting to the possibility to turn waste into profit The quality of the oil, in terms of requirements for animal and human consumption, was assessed by determining some chemical parameters, such as peroxide value (PV), thiobarbituric acid reactive substances (TBARS), ρ-anisidine (ρ-AV) content, total oxidation value (TOTOX), and phospholipids and free fatty acid (%), both in crude viscera oil (CVO) and refined viscera oil (RVO). Among the extraction conditions, the higher CVO yields were obtained at 60 °C for 10 min (57.89%) and at 80 °C for 10 min (67.5%), and the resulting oxidation levels were low when utilizing both extraction conditions. RVO, obtained from CVO extracted at 60 °C, showed the highest quality on the basis of the assessed parameters. The ethyl esters of the total fatty acid (TFA) contents extracted from RVO were enriched in the ω-3 polyunsaturated fatty acid fraction (PUFAE) up to almost 56% via short path distillation (SPD). Antioxidant activities and adipogenic properties were tested in vitro. PUFAE protected 3T3 L1 cells from oxidative stress and exerted an anti-adipogenic effect in Dicentrarchus labrax pre-adipocytes, attesting to the beneficial properties for both farmed fish and human health. These results could stimulate the adoption of solutions aimed to recover and utilize aquaculture by-products at a higher scale, turning "waste into profit" and indicating a strategy to reach more sustainable business models in aquaculture resource utilization according to the principles of the circular economy.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Antioxidants/pharmacology , Fatty Acids, Omega-3/pharmacology , Oxidative Stress/drug effects , Sea Bream/metabolism , Viscera/metabolism , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Antioxidants/isolation & purification , Aquaculture , Bass , Distillation , Fatty Acids, Omega-3/isolation & purification , Mice , Pilot Projects , Waste Products
5.
Mar Drugs ; 19(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924455

ABSTRACT

Non-edible parts of crustaceans could be a rich source of valuable bioactive compounds such as the carotenoid astaxanthin and peptides, which have well-recognized beneficial effects. These compounds are widely used in nutraceuticals and pharmaceuticals, and their market is rapidly growing, suggesting the need to find alternative sources. The aim of this work was to set up a pilot-scale protocol for the reutilization of by-products of processed shrimp, in order to address the utilization of this valuable biomass for nutraceutical and pharmaceuticals application, through the extraction of astaxanthin-enriched oil and antioxidant-rich protein hydrolysates. Astaxanthin (AST) was obtained using "green extraction methods," such as using fish oil and different fatty acid ethyl esters as solvents and through supercritical fluid extraction (SFE), whereas bioactive peptides were obtained by protease hydrolysis. Both astaxanthin and bioactive peptides exhibited bioactive properties in vitro in cellular model systems, such as antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities (IA). The results show higher astaxanthin yields in ethyl esters fatty acids (TFA) extraction and significant enrichment by short-path distillation (SPD) up to 114.80 ± 1.23 µg/mL. Peptide fractions of <3 kDa and 3-5 kDa exhibited greater antioxidant activity while the fraction 5-10 kDa exhibited a better ACE-IA. Lower-molecular-weight bioactive peptides and astaxanthin extracted using supercritical fluids showed protective effects against oxidative damage in 142BR and in 3T3 cell lines. These results suggest that "green" extraction methods allow us to obtain high-quality bioactive compounds from large volumes of shrimp waste for nutraceutical and pharmaceutical applications.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antioxidants/pharmacology , Fibroblasts/drug effects , Fish Proteins/pharmacology , Oxidative Stress/drug effects , Penaeidae/metabolism , Peptides/pharmacology , Shellfish , Waste Products , 3T3 Cells , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Animals , Antioxidants/isolation & purification , Chromatography, Supercritical Fluid , Fibroblasts/metabolism , Fish Proteins/isolation & purification , Food Handling , Green Chemistry Technology , Humans , Hydrolysis , Mice , Peptides/isolation & purification , Pilot Projects , Rabbits , Xanthophylls/isolation & purification , Xanthophylls/pharmacology
6.
Front Vet Sci ; 7: 95, 2020.
Article in English | MEDLINE | ID: mdl-32161764

ABSTRACT

In the present study, the immune-stimulatory effect of two levels of honey bee pollen (5 and 10%, P5 and P10 treatment, respectively) and its supercritical fluid extract (0. 5 and 1%, E0.5 and E1, respectively) included in the diet, was tested in gilthead seabream (Sparus aurata). The in vivo trial was preceded by the evaluation of antioxidant properties of three different bee pollen extracts obtained by water, ethanol 80%, and Supercritic Fluids Extraction (SFE). The preliminary evaluation attested that the SFE showed the lowest extraction yield (10.47%) compared to ethanol 80% (48.61%) and water (45.99%). SFE extract showed good antioxidant properties with high polyphenol content (13.06 mg GAE/g), radical scavenging activity (3.12 mg/ml), reducing power (38.68 mg/mL EC50). On the contrary, the water extract showed the significantly lowest polyphenol content (2 mg GAE/g; P < 0.05). The results of in vivo trial demonstrate that the diets supplemented with SFE bee pollen extract had a stimulatory effect on fish serum immunity, respect to the inclusion of raw pollen, this latter revealing some inhibitory effects in the immune response, such a decrease of serum peroxidase and lysozyme activities, particularly in P10 group significantly different (P < 0.05) from the control group. On the contrary, serum peroxidase, protease, antiprotease, were significantly increased in fish fed the diets supplemented with supercritical fluid extract, respect to the fish fed on control and on diets supplemented with 5 and 10% of raw pollen. For what concerns the bactericidal activity against Vibrio harveyii, all the treatments containing bee pollen regardless of the type showed their serum bactericidal activity significantly increased with respect to the control groups (p < 0.05). Given its high antioxidant properties, the absence of toxic solvents and the positive action carried out on improving the humoral response in gilthead seam bream, honey bee pollen SFE extract can be taken into account in the formulation of fish feeds.

7.
Aquat Toxicol ; 215: 105266, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31401474

ABSTRACT

The persistent pollutants polybrominated diphenyl ethers (PBDEs) have been demonstrated to produce several negative effects on marine organisms. Although Mytilus galloprovincialis was extensively studied as model system, the effects of PBDEs on the innate immune system of mussels remains unclear. In this study, except for the control treatment, specimens of M. galloprovincialis were fed with microalgae treated with increasing concentrations of PBDEs (maximum level 100 ng L-1 of BDE-47 per day). BDE-47 treatment was maintained for 15 days and then the animals were fed with the same control diet, without contaminants, for 15 days. Samples of haemolymph (HL) were obtained at T0, T15 and T30 days of the experiment to evaluate different parameters related to immunity, such as neutral red retention time, and peroxidase, protease, antiprotease, lysozyme and bactericidal activities. BDE-47 exposure for 15 days affected both the stability of haemocytes and humoral parameters. In addition, the obtained results indicated that, at 30 days, after 15 days of culture without contaminant, the immune parameters were still affected, as some of them did not return to the basal levels, and others remained stimulated. Overall the results indicate that BDE-47 exposures at environmentally realistic levels may affect various aspects of immune function in M. galloprovincialis, acting as stressor that can compromise the general welfare.


Subject(s)
Environmental Exposure , Halogenated Diphenyl Ethers/toxicity , Mytilus/immunology , Animals , Anti-Bacterial Agents/pharmacology , Feeding Behavior/drug effects , Hemocytes/drug effects , Hemocytes/metabolism , Hemolymph/drug effects , Hemolymph/metabolism , Hemolymph/microbiology , Intracellular Membranes/drug effects , Intracellular Membranes/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Microalgae/physiology , Mytilus/drug effects , Mytilus/microbiology , Peptide Hydrolases/metabolism , Survival Analysis , Water Pollutants, Chemical/toxicity
8.
Mar Biotechnol (NY) ; 21(4): 565-576, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31079239

ABSTRACT

In this study, the carotenoid astaxanthin was obtained by supercritical fluid extraction (SFE) from shrimp by-products (SBP). Its bioactive properties were evaluated in vitro in human normal and cancerous cells lines. The antioxidant activity of the extracted astaxanthin of the SFE fraction (ASTA) was tested in fibroblast cells (HS-68), by inducing oxidative stress and by evaluating the protective effect of the pre-treatment with different levels of ASTA against toxicity. The anti-proliferative activity was evaluated in hepatoma cells (HEP-G2), treated with increased concentrations of ASTA and measuring the effects on vitality and on some biomolecular markers related to oxidative stress, cell cycle, and apoptosis. It was found that pre-treating normal fibroblast cells with ASTA resulted in a marked increase in cell viability in a dose-dependent manner (P < 0.05) attesting its antioxidant power; in cancer cell line, increased concentrations of ASTA caused a time-dose-dependent decrease in the vitality, attesting its anti-proliferative activity (P < 0.05). The increased levels of the protein p-53 and the reduced levels of the proteins c-Jun and c-Fos at higher concentrations of ASTA, as well as, suggest the pro-apoptotic and anti-cancerous effects that this extract has on hepatocellular carcinomas, confirmed also by caspase-3 activation. These findings suggest biotechnological utilisation of marine by-products for nutraceutical and pharmaceutical applications avoiding the employment of organic solvents for extraction.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Chromatography, Supercritical Fluid/methods , Gene Expression Regulation, Neoplastic/drug effects , Pigments, Biological/pharmacology , Animals , Antineoplastic Agents/isolation & purification , Antioxidants/isolation & purification , Apoptosis/genetics , Carbon Dioxide/chemistry , Caspase 3/genetics , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Hep G2 Cells , Humans , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Oxidative Stress/drug effects , Penaeidae/chemistry , Pigments, Biological/isolation & purification , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Solvents/chemistry , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xanthophylls/isolation & purification , Xanthophylls/pharmacology
9.
Int J Mol Sci ; 20(4)2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30781640

ABSTRACT

This study aimed at the characterization of the antioxidant power of polyphenol extracts (PE) obtained from the algae Cystoseira foeniculacea (CYS) (Phaeophyta) and from the halophyte Halocnemum strobilaceum (HAL), growing in the solar saltworks of western Sicily (Italy), and at the evaluation of their anti-microfouling properties, in order to correlate these activities to defense strategies in extreme environmental conditions. The antioxidant properties were assessed in the PE based on the total antioxidant activity test and the reducing power test; the anti-microfouling properties of the two PE were evaluated by measuring the growth inhibition of marine fish and shellfish pathogen bacteria as well as marine surface fouling bacteria and microalgae exposed to the fractions. Similar polyphenol content (CYS 5.88 ± 0.75 and HAL 6.03 ± 0.25 mg gallic acid equivalents (GAE) g-1 dried weight, DW) and similar reducing power percentage (93.91 ± 4.34 and 90.03 ± 6.19) were recorded for both species, even if they exhibited a different total antioxidant power (measured by the percentage of inhibition of the radical 2,2 diphenyl-1-picrylhydrazyl DPPH), with CYS (79.30) more active than HAL (59.90). Both PE showed anti-microfouling properties, being inhibitors of adhesion and growth of marine fish and shellfish pathogen bacteria (V. aestuarianus, V. carchariae, V. harveyi, P. elyakovii, H. aquamarina) and fouling bacteria (V. natriegens, V. proteolyticus, P. iirgensii, R. litoralis) with minimum inhibitory concentrations comparable to the commercial antifouling products used as a positive control (SEA-NINE™ 211N). Only CYS was a significant inhibitor of the microalgae strains tested, being able to reduce E. gayraliae and C. closterium growth (MIC 10 µg·mL-1) and the adhesion of all three strains tested (E. gayraliae, C. closterium and P. purpureum), suggesting its promise for use as an antifouling (AF) product.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Biotechnology , Ecology , Phaeophyceae/immunology , Salt-Tolerant Plants/immunology , Antioxidants/analysis , Bacteria/drug effects , Biphenyl Compounds/chemistry , Microbial Sensitivity Tests , Picrates/chemistry , Polyphenols/analysis , Sicily
SELECTION OF CITATIONS
SEARCH DETAIL
...