Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Phys Chem Au ; 2(4): 331-345, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36855414

ABSTRACT

This study thoroughly investigated the synthesis of not only 4 triply-doped metal oxides but also 5 singly-doped analogues of Li4Ti5O12 for electrochemical applications. In terms of synthetic novelty, the triply-doped materials were fabricated using a relatively facile hydrothermal method for the first-time, involving the simultaneous substitution of Ca for the Li site, Ln (i.e., Dy, Y, or Gd) for the Ti site, and Cl for the O site. Based on XRD, SEM, and HRTEM-EDS measurements, the resulting materials, incorporating a relatively homogeneous and uniform dispersion of both the single and triple dopants, exhibited a micron-scale flower-like morphology that remained apparently undamaged by the doping process. Crucially, the surface chemistry of all of the samples was probed using XPS in order to analyze any nuanced changes associated with either the various different lanthanide dopants or the identity of the metal precursor types involved. In the latter case, it was observed that the use of a nitrate salt precursor versus that of a chloride salt enabled not only a higher lanthanide incorporation but also the potential for favorable N-doping, all of which promoted a concomitant increase in conductivity due to a perceptible increase in Ti3+ content. In terms of the choice of lanthanide system, it was observed via CV analysis that dopant incorporation generally (albeit with some notable exceptions, especially with Y-based materials) led to the formation of higher amounts of Ti3+ species within both the singly and triply-doped materials, which consequentially led to the potential for increased diffusivity and higher mobility of Li+ species with the possibility for enabling greater capacity within these classes of metal oxides.

2.
Science ; 366(6465): 645-648, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31672899

ABSTRACT

The propensity of metals to form irregular and nonplanar electrodeposits at liquid-solid interfaces has emerged as a fundamental barrier to high-energy, rechargeable batteries that use metal anodes. We report an epitaxial mechanism to regulate nucleation, growth, and reversibility of metal anodes. The crystallographic, surface texturing, and electrochemical criteria for reversible epitaxial electrodeposition of metals are defined and their effectiveness demonstrated by using zinc (Zn), a safe, low-cost, and energy-dense battery anode material. Graphene, with a low lattice mismatch for Zn, is shown to be effective in driving deposition of Zn with a locked crystallographic orientation relation. The resultant epitaxial Zn anodes achieve exceptional reversibility over thousands of cycles at moderate and high rates. Reversible electrochemical epitaxy of metals provides a general pathway toward energy-dense batteries with high reversibility.

3.
Acc Chem Res ; 51(3): 575-582, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29457710

ABSTRACT

Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangle the contributions of distinct properties to the functional electrochemistry. This goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects, and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing. The structural motif most frequently used for insertion type electrodes is based on layered type structures where ion diffusion in two dimensions can be envisioned. However, lattice expansion and contraction associated with the ion movement and electron transfer as a result of repeated charge and discharge cycling can result in structural degradation and amorphization with accompanying loss of capacity. In contrast, tunnel type structures embody a more rigid framework where the inherent structural design can accommodate the presence of cations and often multiple cations. Of specific interest are manganese oxides as they can exhibit a tunneled structure, termed α-MnO2, and are an important class of nanomaterial in the fields of catalysis, adsorption-separation, and ion-exchange. The α-MnO2 structure has one-dimensional 2 × 2 tunnels formed by corner and edge sharing manganese octahedral [MnO6] units and can be readily substituted in the central tunnel by a variety of cations of varying size. Importantly, α-MnO2 materials possess a rich chemistry with significant synthetic versatility allowing deliberate synthetic control of structure, composition, crystallite size, and defect content. This Account considers the investigation of α-MnO2 tunnel type structures and their electrochemistry. Examination of the reported findings on this material family demonstrates that multiple physiochemical properties influence the electrochemistry. The retention of the parent structure during charge and discharge cycling, the material composition including the identity and content of the central cation, the surface condition including oxygen vacancies, and crystallite size have all been demonstrated to impact electrochemical function. The selection of the α-MnO2 family of materials as a model system and the ability to control the variables associated with the structural family affirm that full investigation of the mechanisms related to active materials in an electrochemical system demands concerted efforts in synthetic material property control and multimodal characterization, combined with theory and modeling. This then enables more complete understanding of the factors that must be controlled to achieve consistent and desirable outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...