Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(40): eadk1887, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37801498

ABSTRACT

The maternal microbiome is an important regulator of gestational health, but how it affects the placenta as the interface between mother and fetus remains unexplored. Here, we show that the maternal gut microbiota supports placental development in mice. Depletion of the maternal gut microbiota restricts placental growth and impairs feto-placental vascularization. The maternal gut microbiota modulates metabolites in the maternal and fetal circulation. Short-chain fatty acids (SCFAs) stimulate cultured endothelial cell tube formation and prevent abnormalities in placental vascularization in microbiota-deficient mice. Furthermore, in a model of maternal malnutrition, gestational supplementation with SCFAs prevents placental growth restriction and vascular insufficiency. These findings highlight the importance of host-microbial symbioses during pregnancy and reveal that the maternal gut microbiome promotes placental growth and vascularization in mice.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Pregnancy , Mice , Female , Animals , Placentation , Placenta/metabolism , Fetus
2.
bioRxiv ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824779

ABSTRACT

The maternal microbiome is an important regulator of gestational health, but how it impacts the placenta as the interface between mother and fetus remains unexplored. Here we show that the maternal gut microbiota supports placental development in mice. Depletion of the maternal gut microbiota restricts placental growth and impairs feto-placental vascularization. The maternal gut microbiota modulates metabolites in the maternal and fetal circulation. Short-chain fatty acids (SCFAs) stimulate angiogenesis-related tube formation by endothelial cells and prevent abnormalities in placental vascularization in microbiota-deficient mice. Furthermore, in a model of maternal malnutrition, gestational supplementation with SCFAs prevents placental growth restriction and vascular insufficiency. These findings highlight the importance of host-microbial symbioses during pregnancy and reveal that the maternal gut microbiome promotes placental growth and vascularization in mice.

3.
Cell Host Microbe ; 29(9): 1378-1392.e6, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34358434

ABSTRACT

Many genetic and environmental factors increase susceptibility to cognitive impairment (CI), and the gut microbiome is increasingly implicated. However, the identity of gut microbes associated with CI risk, their effects on CI, and their mechanisms remain unclear. Here, we show that a carbohydrate-restricted (ketogenic) diet potentiates CI induced by intermittent hypoxia in mice and alters the gut microbiota. Depleting the microbiome reduces CI, whereas transplantation of the risk-associated microbiome or monocolonization with Bilophila wadsworthia confers CI in mice fed a standard diet. B. wadsworthia and the risk-associated microbiome disrupt hippocampal synaptic plasticity, neurogenesis, and gene expression. The CI is associated with microbiome-dependent increases in intestinal interferon-gamma (IFNg)-producing Th1 cells. Inhibiting Th1 cell development abrogates the adverse effects of both B. wadsworthia and environmental risk factors on CI. Together, these findings identify select gut bacteria that contribute to environmental risk for CI in mice by promoting inflammation and hippocampal dysfunction.


Subject(s)
Bilophila/metabolism , Cognitive Dysfunction/pathology , Diet, Ketogenic/adverse effects , Hippocampus/physiopathology , Hypoxia, Brain/physiopathology , Th1 Cells/immunology , Animals , Gastrointestinal Microbiome/physiology , Interferon-gamma/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Th1 Cells/cytology
4.
Behav Brain Res ; 410: 113353, 2021 07 23.
Article in English | MEDLINE | ID: mdl-33979656

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) are the most widely used treatment by women experiencing depression during pregnancy. However, the effects of maternal SSRI use on early offspring development remain poorly understood. Recent studies suggest that SSRIs can modify the gut microbiota and interact directly with particular gut bacteria, raising the question of whether the gut microbiome impacts host responses to SSRIs. In this study, we investigate effects of prenatal SSRI exposure on fetal neurodevelopment and further evaluate potential modulatory influences of the maternal gut microbiome. We demonstrate that maternal treatment with the SSRI fluoxetine induces widespread alterations in the fetal brain transcriptome during midgestation, including increases in the expression of genes relevant to synaptic organization and neuronal signaling and decreases in the expression of genes related to DNA replication and mitosis. Notably, maternal fluoxetine treatment from E7.5 to E14.5 has no overt effects on the composition of the maternal gut microbiota. However, maternal pretreatment with antibiotics to deplete the gut microbiome substantially modifies transcriptional responses of the fetal brain to maternal fluoxetine treatment. In particular, maternal fluoxetine treatment elevates localized expression of the opioid binding protein/cell adhesion molecule like gene Opcml in the fetal thalamus and lateral ganglionic eminence, which is prevented by maternal antibiotic treatment. Together, these findings reveal that maternal fluoxetine treatment alters gene expression in the fetal brain through pathways that are impacted, at least in part, by the presence of the maternal gut microbiota.


Subject(s)
Brain/drug effects , Cell Adhesion Molecules/drug effects , Embryo, Mammalian/drug effects , Fluoxetine/pharmacology , Gastrointestinal Microbiome/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Selective Serotonin Reuptake Inhibitors/pharmacology , Transcriptome/drug effects , Animals , Disease Models, Animal , Female , Fluoxetine/administration & dosage , GPI-Linked Proteins/drug effects , Male , Mice , Mice, Inbred C57BL , Pregnancy , Selective Serotonin Reuptake Inhibitors/administration & dosage
5.
Nature ; 586(7828): 281-286, 2020 10.
Article in English | MEDLINE | ID: mdl-32968276

ABSTRACT

'Dysbiosis' of the maternal gut microbiome, in response to challenges such as infection1, altered diet2 and stress3 during pregnancy, has been increasingly associated with abnormalities in brain function and behaviour of the offspring4. However, it is unclear whether the maternal gut microbiome influences neurodevelopment during critical prenatal periods and in the absence of environmental challenges. Here we investigate how depletion and selective reconstitution of the maternal gut microbiome influences fetal neurodevelopment in mice. Embryos from antibiotic-treated and germ-free dams exhibited reduced brain expression of genes related to axonogenesis, deficient thalamocortical axons and impaired outgrowth of thalamic axons in response to cell-extrinsic factors. Gnotobiotic colonization of microbiome-depleted dams with a limited consortium of bacteria prevented abnormalities in fetal brain gene expression and thalamocortical axonogenesis. Metabolomic profiling revealed that the maternal microbiome regulates numerous small molecules in the maternal serum and the brains of fetal offspring. Select microbiota-dependent metabolites promoted axon outgrowth from fetal thalamic explants. Moreover, maternal supplementation with these metabolites abrogated deficiencies in fetal thalamocortical axons. Manipulation of the maternal microbiome and microbial metabolites during pregnancy yielded adult offspring with altered tactile sensitivity in two aversive somatosensory behavioural tasks, but no overt differences in many other sensorimotor behaviours. Together, our findings show that the maternal gut microbiome promotes fetal thalamocortical axonogenesis, probably through signalling by microbially modulated metabolites to neurons in the developing brain.


Subject(s)
Brain/embryology , Brain/metabolism , Dysbiosis/microbiology , Fetus/embryology , Fetus/metabolism , Gastrointestinal Microbiome/physiology , Mothers , Animals , Axons/metabolism , Brain/cytology , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Computer Simulation , Dysbiosis/blood , Dysbiosis/pathology , Female , Fetus/cytology , Male , Mice , Mice, Inbred C57BL , Pregnancy , Pregnancy Complications/blood , Pregnancy Complications/microbiology , Pregnancy Complications/pathology , Principal Component Analysis , Thalamus/cytology , Thalamus/embryology , Thalamus/metabolism
6.
Nat Microbiol ; 4(12): 2064-2073, 2019 12.
Article in English | MEDLINE | ID: mdl-31477894

ABSTRACT

The gut microbiota regulates levels of serotonin (5-hydroxytryptamine (5-HT)) in the intestinal epithelium and lumen1-5. However, whether 5-HT plays a functional role in bacteria from the gut microbiota remains unknown. We demonstrate that elevating levels of intestinal lumenal 5-HT by oral supplementation or genetic deficiency in the host 5-HT transporter (SERT) increases the relative abundance of spore-forming members of the gut microbiota, which were previously reported to promote host 5-HT biosynthesis. Within this microbial community, we identify Turicibacter sanguinis as a gut bacterium that expresses a neurotransmitter sodium symporter-related protein with sequence and structural homology to mammalian SERT. T. sanguinis imports 5-HT through a mechanism that is inhibited by the selective 5-HT reuptake inhibitor fluoxetine. 5-HT reduces the expression of sporulation factors and membrane transporters in T. sanguinis, which is reversed by fluoxetine exposure. Treating T. sanguinis with 5-HT or fluoxetine modulates its competitive colonization in the gastrointestinal tract of antibiotic-treated mice. In addition, fluoxetine reduces the membership of T. sanguinis in the gut microbiota of conventionally colonized mice. Host association with T. sanguinis alters intestinal expression of multiple gene pathways, including those important for lipid and steroid metabolism, with corresponding reductions in host systemic triglyceride levels and inguinal adipocyte size. Together, these findings support the notion that select bacteria indigenous to the gut microbiota signal bidirectionally with the host serotonergic system to promote their fitness in the intestine.


Subject(s)
Fluoxetine/administration & dosage , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Selective Serotonin Reuptake Inhibitors/administration & dosage , Serotonin Receptor Agonists/administration & dosage , Serotonin/administration & dosage , Administration, Oral , Animals , Bacteria/drug effects , Feces/chemistry , Feces/microbiology , Female , Firmicutes/drug effects , Genetic Variation , Host Microbial Interactions/drug effects , Male , Mice , Mice, Inbred C57BL , Specific Pathogen-Free Organisms
7.
Science ; 352(6293): 1581-6, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27256884

ABSTRACT

Foxp3(+) regulatory T cells in peripheral tissues (pT(regs)) are instrumental in limiting inflammatory responses to nonself antigens. Within the intestine, pT(regs) are located primarily in the lamina propria, whereas intraepithelial CD4(+) T cells (CD4(IELs)), which also exhibit anti-inflammatory properties and depend on similar environmental cues, reside in the epithelium. Using intravital microscopy, we show distinct cell dynamics of intestinal T(regs) and CD4(IELs) Upon migration to the epithelium, T(regs) lose Foxp3 and convert to CD4(IELs) in a microbiota-dependent manner, an effect attributed to the loss of the transcription factor ThPOK. Finally, we demonstrate that pT(regs) and CD4(IELs) perform complementary roles in the regulation of intestinal inflammation. These results reveal intratissue specialization of anti-inflammatory T cells shaped by discrete niches of the intestine.


Subject(s)
Animals , Cell Movement , Cell Tracking , Colitis , Hepatocyte Nuclear Factor 3-gamma , Intestinal Mucosa , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microbiota , T-Lymphocytes, Regulatory , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...