Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 11(6): 705-16, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19465924

ABSTRACT

The microRNA pathway has been implicated in the regulation of synaptic protein synthesis and ultimately in dendritic spine morphogenesis, a phenomenon associated with long-lasting forms of memory. However, the particular microRNAs (miRNAs) involved are largely unknown. Here we identify specific miRNAs that function at synapses to control dendritic spine structure by performing a functional screen. One of the identified miRNAs, miR-138, is highly enriched in the brain, localized within dendrites and negatively regulates the size of dendritic spines in rat hippocampal neurons. miR-138 controls the expression of acyl protein thioesterase 1 (APT1), an enzyme regulating the palmitoylation status of proteins that are known to function at the synapse, including the alpha(13) subunits of G proteins (Galpha(13)). RNA-interference-mediated knockdown of APT1 and the expression of membrane-localized Galpha(13) both suppress spine enlargement caused by inhibition of miR-138, suggesting that APT1-regulated depalmitoylation of Galpha(13) might be an important downstream event of miR-138 function. Our results uncover a previously unknown miRNA-dependent mechanism in neurons and demonstrate a previously unrecognized complexity of miRNA-dependent control of dendritic spine morphogenesis.


Subject(s)
Dendritic Spines , MicroRNAs/metabolism , Synapses , Thiolester Hydrolases/metabolism , Animals , Base Sequence , Cell Line , Dendritic Spines/enzymology , Dendritic Spines/ultrastructure , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Gene Expression Profiling , Hippocampus/cytology , Humans , Lipoylation , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Molecular Sequence Data , Morphogenesis , Neurons/cytology , Neurons/metabolism , Oligonucleotide Array Sequence Analysis , Rats , Receptors, Glutamate/metabolism , Synapses/metabolism , Synapses/ultrastructure , Thiolester Hydrolases/antagonists & inhibitors , Thiolester Hydrolases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...