Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6723, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872193

ABSTRACT

Stimuli-responsive emulsions offer a dual advantage, combining long-term storage with controlled release triggered by external cues such as pH or temperature changes. This study establishes that thermo-responsive emulsion behaviour is primarily determined by interactions between, rather than within, interfaces. Consequently, the stability of these emulsions is intricately tied to the nature of the stabilizing microgel particles - whether they are more polymeric or colloidal, and the morphology they assume at the liquid interface. The colloidal properties of the microgels provide the foundation for the long-term stability of Pickering emulsions. However, limited deformability can lead to non-responsive emulsions. Conversely, the polymeric properties of the microgels enable them to spread and flatten at the liquid interface, enabling stimuli-responsive behaviour. Furthermore, microgels shared between two emulsion droplets in flocculated emulsions facilitate stimuli-responsiveness, regardless of their internal architecture. This underscores the pivotal role of microgel morphology and the forces they exert on liquid interfaces in the control and design of stimuli-responsive emulsions and interfaces.

2.
Rev Sci Instrum ; 93(9): 093903, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182507

ABSTRACT

Understanding the interfacial structure-property relationship of complex fluid-fluid interfaces is increasingly important for guiding the formulation of systems with targeted interfacial properties, such as those found in multiphase complex fluids, biological systems, biopharmaceuticals formulations, and many consumer products. Mixed interfacial flow fields, typical of classical Langmuir trough experiments, introduce a complex interfacial flow history that complicates the study of interfacial properties of complex fluid interfaces. In this article, we describe the design, implementation, and validation of a new instrument capable of independent application of controlled interfacial dilation and shear kinematics on fluid interfaces. Combining the Quadrotrough with both in situ Brewster angle microscopy and neutron reflectometry provides detailed structural measurements of the interface at the mesoscale and nanoscale in relationship to interfacial material properties under controlled interfacial deformation histories.


Subject(s)
Biological Products , Dilatation , Surface Properties
3.
Langmuir ; 38(35): 10768-10780, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-35998760

ABSTRACT

Foams can resist destabilizaton in ways that appear similar on a macroscopic scale, but the microscopic origins of the stability and the loss thereof can be quite diverse. Here, we compare both the macroscopic drainage and ultimate collapse of aqueous foams stabilized by either a partially hydrolyzed poly(vinyl alcohol) (PVA) or a nonionic low-molecular-weight surfactant (BrijO10) with the dynamics of individual thin films at the microscale. From this comparison, we gain significant insight regarding the effect of both surface stresses and intermolecular forces on macroscopic foam stability. Distinct regimes in the lifetime of the foams were observed. Drainage at early stages is controlled by the different stress-boundary conditions at the surfaces of the bubbles between the polymer and the surfactant. The stress-carrying capacity of PVA-stabilized interfaces is a result of the mutual contribution of Marangoni stresses and surface shear viscosity. In contrast, surface shear inviscidity and much weaker Marangoni stresses were observed for the nonionic surfactant surfaces, resulting in faster drainage times, both at the level of the single film and the macroscopic foam. At longer times, the PVA foams present a regime of homogeneous coalescence where isolated coalescence events are observed. This regime, which is observed only for PVA foams, occurs when the capillary pressure reaches the maximum disjoining pressure. A final regime is then observed for both systems where a fast coalescence front propagates from the top to the bottom of the foams. The critical liquid fractions and capillary pressures at which this regime is obtained are similar for both PVA and BrijO10 foams, which most likely indicates that collapse is related to a universal mechanism that seems unrelated to the stabilizer interfacial dynamics.

4.
Phys Rev Lett ; 120(26): 268004, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30004717

ABSTRACT

We study experimentally and numerically the motion of a self-phoretic active particle in two-dimensional loosely packed colloidal crystals at fluid interfaces. Two scenarios emerge depending on the interactions between the active particle and the lattice: the active particle either navigates throughout the crystal as an interstitial or is part of the lattice and behaves as an active atom. Active interstitials undergo a run-and-tumble-like motion, with the passive colloids of the crystal acting as tumbling sites. Instead, active atoms exhibit an intermittent motion, stemming from the interplay between the periodic potential landscape of the passive crystal and the particle's self-propulsion. Our results constitute the first step towards the realization of non-close-packed crystalline phases with internal activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...