Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Fungi (Basel) ; 10(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39057336

ABSTRACT

The use of arbuscular mycorrhizal fungi (AMF) offers promising benefits to agriculture in the Amazon regions, where soils are characteristically acidic and nutrient-poor. The purpose of this research was to investigate the potential effects of two recently described species of AMF (Nanoglomus plukenetiae and Rhizoglomus variabile) native to the Peruvian Amazon for improving the plant growth of Plukenetia volubilis (inka nut or sacha inchi) and protecting the roots against soil pathogens. Two assays were simultaneously conducted under greenhouse conditions in Peru. The first focused on evaluating the biofertilizer effect of AMF inoculation, while the second examined the bioprotective effect against the root knot nematode, Meloidogyne incognita. Overall, the results showed that AMF inoculation of P. volubilis seedlings positively improved their development, particularly their biomass, height, and the leaf nutrient contents. When seedlings were exposed to M. incognita, plant growth was also noticeably higher for AMF-inoculated plants than those without AMF inoculation. Nematode reproduction was significantly suppressed by the presence of AMF, in particular R. variabile, and especially when inoculated prior to nematode exposure. The dual AMF inoculation did not necessarily lead to improved crop growth but notably improved P and K leaf contents. The findings provide strong justification for the development of products based on AMF as agro-inputs to catalyze nutrient use and uptake and protect crops against pests and diseases, especially those that are locally adapted to local crops and cropping conditions.

2.
J Fungi (Basel) ; 9(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36836309

ABSTRACT

(1) Background: Beta diversity, i.e., the variance in species compositions across communities, has been pointed out as a main factor for explaining ecosystem functioning. However, few studies have directly tested the effect of crop establishment on beta diversity. We studied beta diversity patterns of arbuscular mycorrhizal (AM) fungal communities associated to sacha inchi (Plukenetia volubilis) after crop establishment. (2) Methods: We molecularly characterized the AM fungal communities associated to roots of sacha inchi in plots after different times of crop establishment, from less than one year to older than three. We analyzed the patterns of alpha, beta, and phylogenetic diversity, and the sources of variation of AM fungal community composition. (3) Results: Beta diversity increased in the older plots, but no temporal effect in alpha or phylogenetic diversity was found. The AM fungal community composition was driven by environmental factors (altitude and soil conditions). A part of this variation could be attributed to differences between sampled locations (expressed as geographic coordinates). Crop age, in turn, affected the composition with no interactions with the environmental conditions or spatial location. (4) Conclusions: These results point out towards a certain recovery of the soil microbiota after sacha inchi establishment. This fact could be attributed to the low-impact management associated to this tropical crop.

SELECTION OF CITATIONS
SEARCH DETAIL