Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 122(4): 044801, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30768287

ABSTRACT

Temporally modulated electron beams have a wide array of applications ranging from the generation of coherently enhanced electromagnetic radiation to the resonant excitation of electromagnetic wakefields in advanced-accelerator concepts. Likewise producing low-energy ultrashort microbunches could be useful for ultrafast electron diffraction and new accelerator-based light-source concepts. In this Letter we propose and experimentally demonstrate a passive microbunching technique capable of forming a picosecond bunch train at ∼6 MeV. The method relies on the excitation of electromagnetic wakefields as the beam propagates through a dielectric-lined waveguide. Owing to the nonultrarelativistic nature of the beam, the induced energy modulation eventually converts into a density modulation as the beam travels in a following free-space drift. The modulated beam is further accelerated to ∼20 MeV while preserving the imparted density modulation.

2.
Phys Rev Lett ; 120(14): 144802, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29694120

ABSTRACT

Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximately 200 keV/c amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...