Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(6): e202400433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584139

ABSTRACT

This study aims to identify the phytochemical profile of Apis mellifera propolis and explore the potential of its anti-diabetic activity through inhibition of α-amylase (α-AE), α-glucosidase(α-GE), as well as novel antidiabetic compounds of propolis. Apis mellifera propolis extract (AMPE) exhibited elevated polyphenol 33.26±0.17 (mg GAE/g) and flavonoid (15.45±0.13 mg RE/g). It also indicated moderate strong antioxidant activity (IC50 793.09±1.94 µg/ml). This study found that AMPE displayed promising α-AE and α-GE inhibition through in vitro study. Based on LC-MS/MS screening, 18 unique AMPE compounds were identified, with majorly belonging to anthraquinone and flavonoid compounds. Furthermore, in silico study determined that 8 compounds of AMPE exhibited strong binding to α-AE that specifically interacted with its catalytic residue of ASP197. Moreover, 2 compounds exhibit potential inhibition of α-GE, by interacting with crucial amino acids of ARG315, ASP352, and ASP69. Finally, we suggested that 2,7-Dihydroxy-1-(p-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene and 3(3-(3,4-Dihydroxybenzyl)-7-hydroxychroman-4-one as novel inhibitors of α-AE and α-GE. Notably, these compounds were initially discovered from Apis mellifera propolis in this study. The molecular dynamic analysis confirmed their stable binding with both enzymes over 100 ns simulations. The in vivo acute toxicity assay reveals AMPE as a practically non-toxic product with an LD50 value of 16,050 mg/kg. Therefore, this propolis may serve as a promising natural product for diabetes mellitus treatment.


Subject(s)
Antioxidants , Hypoglycemic Agents , Molecular Docking Simulation , Phytochemicals , Propolis , alpha-Amylases , alpha-Glucosidases , Propolis/chemistry , Propolis/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Bees , Animals , alpha-Glucosidases/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Molecular Dynamics Simulation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology
2.
Data Brief ; 48: 109254, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383824

ABSTRACT

Curcuma aeruginosa Roxb. is an Indonesian traditional medicinal plant of the Zingiberaceae family. C. aeruginosa is known to have anticancer activity, especially in the rhizomes. Despite many studies on the phytochemical content of this plant with antioxidant and anticancer activity, transcriptomic studies are still limited in terms of genetic information. We ran transcriptome of Curcuma aeruginosa using a paired-end Illumina NextSeq 550 with PE150 mode and generating 12.8 GB of raw data. Raw reads have been filed with NCBI under project number PRJNA918644. This dataset allowed us to identify genes associated with biosynthetic pathways of anticancer drugs. Transcriptome data can also be used to develop new EST-SSR and SNP markers for use in plant breeding programs.

SELECTION OF CITATIONS
SEARCH DETAIL
...