Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS One ; 17(8): e0272364, 2022.
Article in English | MEDLINE | ID: mdl-35947606

ABSTRACT

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.


Subject(s)
Bacteriophages , COVID-19 , Single-Domain Antibodies , Antibodies, Neutralizing , Antibodies, Viral , Bacteriophages/metabolism , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Mol Cancer Ther ; 21(6): 960-973, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35312769

ABSTRACT

Glypican-1 (GPC1) is a cell surface proteoglycan that is upregulated in multiple types of human cancers including pancreatic cancer. Here, we investigated whether GPC1 could be a target of antibody-toxin fusion proteins (i.e., immunotoxins) for treating pancreatic cancer. We constructed a panel of GPC1-targeted immunotoxins derived from a functional domain of Pseudomonas exotoxin A. An albumin-binding domain was also introduced into the anti-GPC1 immunotoxin to improve serum half-life. Small-molecule screening was performed to identify irinotecan that shows synergistic efficacy with the immunotoxin. We showed that GPC1 was internalized upon antibody binding. Anti-GPC1 immunotoxins alone inhibited tumor growth in a pancreatic cancer xenograft model. The immunotoxin treatment reduced active ß-catenin expression in tumor cells. Furthermore, immunotoxins containing an albumin-binding domain in combination with irinotecan caused pancreatic tumor regression. GPC1 expression was reduced by the immunotoxin treatment due to the degradation of the internalized GPC1 and its short cellular turnover rate. Our data indicate that the GPC1-targeted immunotoxin inhibits pancreatic tumor growth via degradation of internalized GPC1, downregulation of Wnt signaling, and inhibition of protein synthesis. The anti-GPC1 immunotoxin in combination with irinotecan thus provides a potential new treatment strategy for patients with pancreatic tumors.


Subject(s)
Immunotoxins , Pancreatic Neoplasms , Albumins , Animals , Down-Regulation , Glypicans/genetics , Humans , Immunotoxins/chemistry , Immunotoxins/pharmacology , Irinotecan , Mice , Pancreatic Neoplasms/drug therapy , Wnt Signaling Pathway , Pancreatic Neoplasms
4.
bioRxiv ; 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34729560

ABSTRACT

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.

5.
Trends Pharmacol Sci ; 41(11): 815-829, 2020 11.
Article in English | MEDLINE | ID: mdl-32829936

ABSTRACT

With the recent spread of severe acute respiratory syndrome coronavirus (SARS-CoV-2)_ infecting >16 million people worldwide as of 28 July 2020, causing >650 000 deaths, there is a desperate need for therapeutic agents and vaccines. Building on knowledge of previous outbreaks of SARS-CoV-1 and Middle East respiratory syndrome (MERS), the development of therapeutic antibodies and vaccines against coronavirus disease 2019 (COVID-19) is taking place at an unprecedented speed. Current efforts towards the development of neutralizing antibodies against COVID-19 are summarized. We also highlight the importance of a fruitful antibody development pipeline to combat the potential escape plans of SARS-CoV-2, including somatic mutations and antibody-dependent enhancement (ADE).


Subject(s)
Antibodies, Neutralizing/therapeutic use , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Immunotherapy/methods , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Betacoronavirus/immunology , COVID-19 , Cross Reactions , Humans , Pandemics , SARS-CoV-2
6.
bioRxiv ; 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32511420

ABSTRACT

The National Center for Advancing Translational Sciences (NCATS) has developed an online open science data portal for its COVID-19 drug repurposing campaign - named OpenData - with the goal of making data across a range of SARS-CoV-2 related assays available in real-time. The assays developed cover a wide spectrum of the SARS-CoV-2 life cycle, including both viral and human (host) targets. In total, over 10,000 compounds are being tested in full concentration-response ranges from across multiple annotated small molecule libraries, including approved drug, repurposing candidates and experimental therapeutics designed to modulate a wide range of cellular targets. The goal is to support research scientists, clinical investigators and public health officials through open data sharing and analysis tools to expedite the development of SARS-CoV-2 interventions, and to prioritize promising compounds and repurposed drugs for further development in treating COVID-19.

7.
Int Immunopharmacol ; 66: 296-308, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30502651

ABSTRACT

CpG-motif-containing oligodeoxynucleotides (CpG-ODN) activate innate immunity through Toll-Like Receptor (TLR) 9 signaling and generate local immune responses when delivered directly to the lung. Herein we describe pharmacological studies in mice, cynomolgus monkeys, and in human primary cells which support the development of DV281, a C-class CpG-ODN, as an inhaled aerosolized immunotherapeutic for lung cancer to be combined with an inhibitor of the anti-programmed cell death protein 1 (PD­1) immune checkpoint. In vitro, DV281 potently induced Interferon (IFN)­α from monkey and human peripheral blood mononuclear cells (PBMCs), stimulated interleukin­6 production and proliferation in human B cells, and induced TLR9-dependent cytokine responses from mouse splenocytes. Intranasal delivery of DV281 to mice led to substantial but transient cytokine and chemokine responses in the lung. Lung responses to repeated intranasal DV281 were partially to fully reversible 2 weeks after the final dose and were absent in TLR9-deficient mice. Single escalating doses of aerosolized DV281 in monkeys induced dose-dependent induction of IFN-regulated genes in bronchoalveolar lavage cells and blood. In a repeat-dose safety study in monkeys, inhaled DV281 was well-tolerated, and findings were mechanism of action-related and non-adverse. Co-culture of human PBMC with DV281 and anti-PD­1 antibody did not augment cytokine or cellular proliferation responses compared to DV281 alone, indicating that the combination did not lead to dysregulated cytokine responses. These studies support clinical development of inhaled aerosolized DV281 as a combination therapy with anti-PD­1 antibody for lung cancer immunotherapy.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B-Lymphocytes/drug effects , Immunotherapy/methods , Lung Neoplasms/therapy , Oligodeoxyribonucleotides/pharmacology , Toll-Like Receptor 9/genetics , Administration, Inhalation , Aerosols , Animals , B-Lymphocytes/immunology , Cell Proliferation , Cells, Cultured , Female , Humans , Interferon-alpha/metabolism , Interleukin-6/metabolism , Lung Neoplasms/immunology , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology , Toll-Like Receptor 9/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...