Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 13: 895063, 2022.
Article in English | MEDLINE | ID: mdl-35783693

ABSTRACT

Learning Mandarin has become increasingly important in the Western world but is rather difficult to be learnt by speakers of non-tone languages. Since tone language learning requires very precise tonal ability, we set out to test whether musical skills, musical status, singing ability, singing behavior during childhood, basic auditory skills, and short-term memory ability contribute to individual differences in Mandarin performance. Therefore, we developed Mandarin tone discrimination and pronunciation tasks to assess individual differences in adult participants' (N = 109) tone language ability. Results revealed that short-term memory capacity, singing ability, pitch perception preferences, and tone frequency (high vs. low tones) were the most important predictors, which explained individual differences in the Mandarin performances of our participants. Therefore, it can be concluded that training of basic auditory skills, musical training including singing should be integrated in the educational setting for speakers of non-tone languages who learn tone languages such as Mandarin.

2.
Brain Sci ; 12(6)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35741629

ABSTRACT

In recent years, evidence has been provided that individuals with dyslexia show alterations in the anatomy and function of the auditory cortex. Dyslexia is considered to be a learning disability that affects the development of music and language capacity. We set out to test adolescents and young adults with dyslexia and controls (N = 52) for their neurophysiological differences by investigating the auditory evoked P1-N1-P2 complex. In addition, we assessed their ability in Mandarin, in singing, their musical talent and their individual differences in elementary auditory skills. A discriminant analysis of magnetencephalography (MEG) revealed that individuals with dyslexia showed prolonged latencies in P1, N1, and P2 responses. A correlational analysis between MEG and behavioral variables revealed that Mandarin syllable tone recognition, singing ability and musical aptitude (AMMA) correlated with P1, N1, and P2 latencies, respectively, while Mandarin pronunciation was only associated with N1 latency. The main findings of this study indicate that the earlier P1, N1, and P2 latencies, the better is the singing, the musical aptitude, and the ability to link Mandarin syllable tones to their corresponding syllables. We suggest that this study provides additional evidence that dyslexia can be understood as an auditory and sensory processing deficit.

3.
Pain ; 153(8): 1702-1714, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22704853

ABSTRACT

Endurance exercise is known to promote sustained antinociceptive effects, and there is evidence that the reduction of pain perception mediated by exercise is driven by central opioidergic neurotransmission. To directly investigate the involved brain areas and the underlying neural mechanisms in humans, thermal heat-pain challenges were applied to 20 athletes during 4 separate functional magnetic resonance imaging (fMRI) scans, i.e., before and after 2 hours of running (exercise condition) and walking (control condition), respectively. Imaging revealed a reproducible pattern of distributed pain-related activation in all 4 conditions, including the mesial and lateral pain systems, and the periaqueductal gray (PAG) as a key region of the descending antinociceptive pathway. At the behavioral level, running as compared with walking decreased affective pain ratings. The influence of exercise on pain-related activation was reflected in a significant time × treatment interaction in the PAG, along with similar trends in the pregenual anterior cingulate cortex and the middle insular cortex, where pain-induced activation levels were elevated after walking, but decreased or unchanged after running. Our findings indicate that enhanced reactive recruitment of endogenous antinociceptive mechanisms after aversive repeated pain exposure is attenuated by exercise. The fact that running, but not walking, reproducibly elevated ß-endorphin levels in plasma indicates involvement of the opioidergic system in exercise. This may argue for an elevated opioidergic tone in the brain of athletes, mediating antinociceptive mechanisms. Our findings provide the first evidence using functional imaging to support the role of endurance exercise in pain modulation.


Subject(s)
Brain/physiology , Exercise/physiology , Magnetic Resonance Imaging/methods , Pain Perception/physiology , Pain Threshold/physiology , Physical Endurance/physiology , Running/physiology , Adaptation, Physiological , Adult , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...