Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 15220, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076053

ABSTRACT

Nutrition during the first years of life has a significant impact on brain development. This study characterized differences in brain maturation from birth to 6 months of life in infant macaques fed formulas differing in content of lutein, ß-carotene, and other carotenoids using Magnetic Resonance Imaging to measure functional connectivity. We observed differences in functional connectivity based on the interaction of diet, age and brain networks. Post hoc analysis revealed significant diet-specific differences between insular-opercular and somatomotor networks at 2 months of age, dorsal attention and somatomotor at 4 months of age, and within somatomotor and between somatomotor-visual and auditory-dorsal attention networks at 6 months of age. Overall, we found a larger divergence in connectivity from the breastfeeding group in infant macaques fed formula containing no supplemental carotenoids in comparison to those fed formula supplemented with carotenoids. These findings suggest that carotenoid formula supplementation influences functional brain development.


Subject(s)
Carotenoids , Macaca , Animals , Food, Formulated , Humans , Lutein/pharmacology , beta Carotene
2.
Neurobiol Dis ; 119: 65-78, 2018 11.
Article in English | MEDLINE | ID: mdl-30048804

ABSTRACT

We have identified a natural Japanese macaque model of the childhood neurodegenerative disorder neuronal ceroid lipofuscinosis, commonly known as Batten Disease, caused by a homozygous frameshift mutation in the CLN7 gene (CLN7-/-). Affected macaques display progressive neurological deficits including visual impairment, tremor, incoordination, ataxia and impaired balance. Imaging, functional and pathological studies revealed that CLN7-/- macaques have reduced retinal thickness and retinal function early in disease, followed by profound cerebral and cerebellar atrophy that progresses over a five to six-year disease course. Histological analyses showed an accumulation of cerebral, cerebellar and cardiac storage material as well as degeneration of neurons, white matter fragmentation and reactive gliosis throughout the brain of affected animals. This novel CLN7-/- macaque model recapitulates key behavioral and neuropathological features of human Batten Disease and provides novel insights into the pathophysiology linked to CLN7 mutations. These animals will be invaluable for evaluating promising therapeutic strategies for this devastating disease.


Subject(s)
Disease Models, Animal , Membrane Transport Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/diagnostic imaging , Neuronal Ceroid-Lipofuscinoses/genetics , Animals , Female , Gene Knockout Techniques/methods , Locomotion/physiology , Macaca , Male , Mutation, Missense/genetics , Neuronal Ceroid-Lipofuscinoses/physiopathology , Postural Balance/physiology , Primates , Vision Disorders/diagnostic imaging , Vision Disorders/genetics , Vision Disorders/physiopathology
3.
Adv Exp Med Biol ; 801: 309-16, 2014.
Article in English | MEDLINE | ID: mdl-24664712

ABSTRACT

The aim of this study was to assess the feasibility of using a commercially available high-resolution adaptive optics (AO) camera to image the cone mosaic in Japanese macaques (Macaca fuscata) with dominantly inherited drusen. The macaques examined develop drusen closely resembling those seen in humans with age-related macular degeneration (AMD). For each animal, we acquired and processed images from the AO camera, montaged the results into a composite image, applied custom cone-counting software to detect individual cone photoreceptors, and created a cone density map of the macular region. We conclude that flood-illuminated AO provides a promising method of visualizing the cone mosaic in nonhuman primates. Future studies will quantify the longitudinal change in the cone mosaic and its relationship to the severity of drusen in these animals.


Subject(s)
Disease Models, Animal , Fundus Oculi , Macaca , Macular Degeneration/pathology , Optic Disk Drusen/pathology , Retinal Cone Photoreceptor Cells/cytology , Animals , Axial Length, Eye/pathology , Cell Count/instrumentation , Cell Count/methods , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Neoplasms, Basal Cell , Ophthalmoscopy/methods
4.
Rejuvenation Res ; 17(2): 150-3, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24134213

ABSTRACT

Men show an age-related decline in the circulating levels of testosterone (T) and dehydroepiandrosterone sulfate (DHEAS). Consequently, there is interest in developing androgen supplementation paradigms for old men that replicate the hormone profiles of young adults. In the present study, we used old (21-26 years old) male rhesus monkeys as a model to examine the efficacy of an androgen supplementation paradigm that comprised oral T administration (12 mg/kg body weight, dissolved in sesame oil/chocolate) in the evening, and two oral DHEA administrations, 3 hr apart (0.04 mg/kg body weight, dissolved in sesame oil/chocolate) in the morning. After 5 days of repeated hormone supplementation, serial blood samples were remotely collected from each animal hourly across the 24-hr day, and assayed for cortisol, DHEAS, T, 5α-dihydrotestosterone (DHT), estrone (E1), and 17ß-estradiol (E2). Following androgen supplementation, T levels were significantly elevated and this was associated with a more sustained nocturnal elevation of T's primary bioactive metabolites, DHT and E1 and E2. Plasma DHEAS levels were also significantly elevated after androgen supplementation; DHEAS levels rose in the early morning and gradually declined during the course of the day, closely mimicking the profiles observed in young adults (7-12 years old); in contrast, cortisol levels were unaltered by the supplementation. Together the data demonstrate a non-invasive androgen supplementation paradigm that restores youthful circulating androgen levels in old male primates. Because this paradigm preserves the natural circulating circadian hormone patterns, we predict that it will produce fewer adverse side effects, such as perturbed sleep or cognitive impairment.


Subject(s)
Aging/drug effects , Androgens/pharmacology , Macaca mulatta/physiology , Aging/blood , Androgens/administration & dosage , Animals , Dietary Supplements , Humans , Macaca mulatta/blood , Male , Steroids/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...