Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 12: 656561, 2021.
Article in English | MEDLINE | ID: mdl-34108877

ABSTRACT

Effective treatments for neurodegenerative diseases remain elusive and are critically needed since the burden of these diseases increases across an aging global population. Nitric oxide (NO) is a gasotransmitter that binds to soluble guanylate cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP). Impairment of this pathway has been demonstrated in neurodegenerative diseases. Normalizing deficient NO-cGMP signaling could address multiple pathophysiological features of neurodegenerative diseases. sGC stimulators are small molecules that synergize with NO, activate sGC, and increase cGMP production. Many systemic sGC stimulators have been characterized and advanced into clinical development for a variety of non-central nervous system (CNS) pathologies. Here, we disclose the discovery of CY6463, the first brain-penetrant sGC stimulator in clinical development for the treatment of neurodegenerative diseases, and demonstrate its ability to improve neuronal activity, mediate neuroprotection, and increase cognitive performance in preclinical models. In several cellular assays, CY6463 was demonstrated to be a potent stimulator of sGC. In agreement with the known effects of sGC stimulation in the vasculature, CY6463 elicits decreases in blood pressure in both rats and mice. Relative to a non-CNS penetrant sGC stimulator, rodents treated with CY6463 had higher cGMP levels in cerebrospinal fluid (CSF), functional-magnetic-resonance-imaging-blood-oxygen-level-dependent (fMRI-BOLD) signals, and cortical electroencephalographic (EEG) gamma-band oscillatory power. Additionally, CY6463 improved cognitive performance in a model of cognitive disruption induced by the administration of a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist. In models of neurodegeneration, CY6463 treatment increased long-term potentiation (LTP) in hippocampal slices from a Huntington's disease mouse model and decreased the loss of dendritic spines in aged and Alzheimer's disease mouse models. In a model of diet-induced obesity, CY6463 reduced markers of inflammation in the plasma. Furthermore, CY6463 elicited an additive increase in cortical gamma-band oscillatory power when co-administered with donepezil: the standard of care in Alzheimer's disease. Together, these data support the clinical development of CY6463 as a novel treatment for neurodegenerative disorders.

2.
Bioorg Med Chem Lett ; 40: 127886, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33662540

ABSTRACT

Soluble guanylate cyclase (sGC) is a clinically validated therapeutic target in the treatment of pulmonary hypertension. Modulators of sGC have the potential to treat diseases that are affected by dysregulation of the NO-sGC-cGMP signal transduction pathway. This letter describes the SAR efforts that led to the discovery of CYR715, a novel carboxylic acid-containing sGC stimulator, with an improved metabolic profile relative to our previously described stimulator, IWP-051. CYR715 addressed potential idiosyncratic drug toxicity (IDT) liabilities associated with the formation of reactive, migrating acyl glucuronides (AG) found in related carboxylic acid-containing analogs and demonstrated high oral bioavailability in rat and dose-dependent hemodynamic pharmacology in normotensive Sprague-Dawley rats.


Subject(s)
Carboxylic Acids/chemistry , Glucuronides/chemistry , Hypertension, Pulmonary/drug therapy , Soluble Guanylyl Cyclase/metabolism , Vasodilator Agents/chemistry , Administration, Oral , Animals , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Glucuronides/administration & dosage , Glucuronides/pharmacokinetics , Humans , Male , Metabolome , Models, Molecular , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Protein Binding , Rats, Sprague-Dawley , Signal Transduction , Structure-Activity Relationship , Vasodilator Agents/administration & dosage , Vasodilator Agents/pharmacokinetics
3.
Bioorg Med Chem Lett ; 22(11): 3795-9, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22546671

ABSTRACT

The inhibition of hH-PGDS has been proposed as a potential target for the development of anti-allergic and anti-inflammatory drugs. Herein we describe our investigation of the binding pocket of this important enzyme and our observation that two water molecules bind to our inhibitors and the enzyme. A series of compounds were prepared to the probe the importance of the water molecules in determining the binding affinity of the inhibitors to the enzyme. The study provides insight into the binding requirements for the design of potent hH-PGDS inhibitors.


Subject(s)
Anti-Allergic Agents/chemistry , Anti-Inflammatory Agents/chemistry , Enzyme Inhibitors/chemistry , Intramolecular Oxidoreductases/antagonists & inhibitors , Lipocalins/antagonists & inhibitors , Water/chemistry , Anti-Allergic Agents/chemical synthesis , Anti-Inflammatory Agents/chemical synthesis , Binding Sites , Computer Simulation , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Humans , Intramolecular Oxidoreductases/metabolism , Isoquinolines/chemistry , Lipocalins/metabolism , Naphthalenes/chemistry , Protein Structure, Tertiary
5.
Chem Biol Drug Des ; 70(6): 540-6, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18005335

ABSTRACT

Polo-like kinase 1 is an important regulator of cell cycle progression whose over-expression is often associated with oncogenesis. Polo-like kinase 1 hence represents an attractive target for cancer intervention. BI 2536 (Boehringer Ingelheim, Ingelheim, Germany), a Polo-like kinase 1 inhibitor currently in clinical trials, exhibits nanomolar potency against Polo-like kinase isoforms and high selectivity against other kinases. We have previously published the crystal structures of the Polo-like kinase 1 domain in complex with AMPPNP and an Aurora A inhibitor. In this work, we present the co-crystal structure of Polo-like kinase 1 with BI 2536. The structure, in combination with selectivity data for BI 2536 and related compounds, illustrates important features for potency and selectivity. In particular, we show that the methoxy group of BI 2536 is an important specificity determinant against non-Polo-like kinases by taking advantage of a small pocket generated by Leu 132 in the hinge region of Polo-like kinase 1. The work presented here provides a framework for structure-based drug design of Polo-like kinase 1-specific inhibitors.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/chemistry , Adenylyl Imidodiphosphate/chemistry , Animals , Cell Cycle/drug effects , Cell Cycle Proteins/chemistry , Clinical Trials as Topic , Crystallography, X-Ray , Drug Design , Humans , Models, Molecular , Neoplasm Proteins/chemistry , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Binding/physiology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/chemistry , Protein Structure, Tertiary/physiology , Proto-Oncogene Proteins/chemistry , Pteridines/pharmacology , Pteridines/therapeutic use , Structure-Activity Relationship , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...