Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(18): 7998-8008, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38629179

ABSTRACT

Understanding microplastic exposure and effects is critical to understanding risk. Here, we used large, in-lake closed-bottom mesocosms to investigate exposure and effects on pelagic freshwater ecosystems. This article provides details about the experimental design and results on the transport of microplastics and exposure to pelagic organisms. Our experiment included three polymers of microplastics (PE, PS, and PET) ranging in density and size. Nominal concentrations ranged from 0 to 29,240 microplastics per liter on a log scale. Mesocosms enclosed natural microbial, phytoplankton, and zooplankton communities and yellow perch (Perca flavescens). We quantified and characterized microplastics in the water column and in components of the food web (biofilm on the walls, zooplankton, and fish). The microplastics in the water stratified vertically according to size and density. After 10 weeks, about 1% of the microplastics added were in the water column, 0.4% attached to biofilm on the walls, 0.01% within zooplankton, and 0.0001% in fish. Visual observations suggest the remaining >98% were in a surface slick and on the bottom. Our study suggests organisms that feed at the surface and in the benthos are likely most at risk, and demonstrates the value of measuring exposure and transport to inform experimental designs and achieve target concentrations in different matrices within toxicity tests.


Subject(s)
Microplastics , Water Pollutants, Chemical , Zooplankton , Animals , Lakes , Ecosystem , Food Chain , Environmental Monitoring , Phytoplankton , Perches/metabolism
2.
Environ Toxicol Chem ; 43(5): 999-1011, 2024 May.
Article in English | MEDLINE | ID: mdl-38415806

ABSTRACT

Microplastic contamination is ubiquitous across the globe, even in remote locations. Still, the sources and pathways of microplastics to such locations are largely unknown. To investigate microplastic contamination in a semi-remote location, we measured microplastic concentrations in nine oligotrophic lakes within and around the International Institute for Sustainable Development-Experimental Lakes Area in northwestern Ontario, Canada. Our first objective was to establish ambient concentrations of microplastics in bottom sediments, surface water, and atmospheric deposition in semi-remote boreal lakes. Across all lakes, mean shallow and deep sediment microplastic concentrations, near-surface water microplastic concentrations from in situ filtering, and dry atmospheric microplastic deposition rates were 551 ± 354 particles kg-1, 177 ± 103 particles kg-1, 0.2 ± 0.3 particles L-1, and 0.4 ± 0.2 particles m-2 day-1, respectively. Our second objective was to investigate whether microplastic contamination of these lakes is driven by point sources including local runoff and direct anthropogenic inputs or nonpoint sources such as atmospheric deposition. Lakes were selected based on three levels of anthropogenic activity-low, medium, and high-though activity levels were minimal across all study lakes compared with highly populated areas. Whereas a positive correlation would indicate that point sources were a likely pathway, we observed no relationship between the level of anthropogenic activity and microplastic contamination of surface water. Moreover, the composition of microplastics in surface water and atmospheric deposition were similar, comprising mostly polyester and acrylic fibers. Together, these results suggest that atmospheric deposition may be the main pathway of microplastics to these remote boreal lakes. Environ Toxicol Chem 2024;43:999-1011. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Environmental Monitoring , Lakes , Microplastics , Water Pollutants, Chemical , Lakes/chemistry , Microplastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Ontario , Geologic Sediments/chemistry
3.
Proc Biol Sci ; 290(2006): 20230841, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37700653

ABSTRACT

Aquatic ecosystems offer a continuum of water flow from headwater streams to inland lakes and coastal marine systems. This spatial connectivity influences the structure, function and dynamics of aquatic communities, which are among the most threatened and degraded on the Earth. Here, we determine the spatial resolution of environmental DNA (eDNA) in dendritic freshwater networks, which we use as a model for connected metacommunities. Our intensive sampling campaign comprised over 420 eDNA samples across 21 connected lakes, allowing us to analyse detections at a variety of scales, from different habitats within a lake to entire lake networks. We found strong signals of within-lake variation in eDNA distribution reflective of typical habitat use by both fish and zooplankton. Most importantly, we also found that connecting channels between lakes resulted in an accumulation of downstream eDNA detections in lakes with a higher number of inflows, and as networks increased in length. Environmental DNA achieves biodiversity surveys in these habitats in a high-throughput, spatially integrated way. These findings have profound implications for the interpretation of eDNA detections in aquatic ecosystems in global-scale biodiversity monitoring observations.


Subject(s)
DNA, Environmental , Ecosystem , Animals , Biodiversity , Lakes , Earth, Planet
4.
Mol Ecol Resour ; 22(8): 2928-2940, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35730338

ABSTRACT

Nucleic acids released by organisms and isolated from environmental substrates are increasingly being used for molecular biomonitoring. While environmental DNA (eDNA) has received much attention, the potential of environmental RNA as a biomonitoring tool remains under-explored. Several recent studies using paired DNA and RNA metabarcoding of bulk samples suggest that RNA might better reflect "metabolically active" parts of the community. However, such studies mainly capture organismal eDNA and eRNA. For larger eukaryotes, isolation of extra-organismal RNA will be important, but viability needs to be examined in a field-based setting. In this study we evaluate (a) whether extra-organismal eRNA release from macroeukaryotes can be detected given its supposedly rapid degradation, and (b) if the same field collection methods for eDNA can be applied to eRNA. We collected eDNA and eRNA from water in lakes where fish community composition is well documented, enabling a comparison between the two nucleic acids in two different seasons with monitoring using conventional methods. We found that eRNA is released from macroeukaryotes and can be filtered from water and metabarcoded in a similar manner as eDNA to reliably provide species composition information. eRNA had a small but significantly greater true positive rate than eDNA, indicating that it correctly detects more species known to exist in the lakes. Given relatively small differences between the two molecules in describing fish community composition, we conclude that if eRNA provides significant advantages in terms of lability, it is a strong candidate to add to the suite of molecular monitoring tools.


Subject(s)
DNA, Environmental , Nucleic Acids , Animals , Biodiversity , DNA/genetics , DNA Barcoding, Taxonomic/methods , DNA, Environmental/genetics , Ecosystem , Environmental Monitoring/methods , Fishes/genetics , Lakes , Nucleic Acids/genetics , RNA/genetics , Water
5.
Environ Sci Process Impacts ; 24(6): 932-944, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35532885

ABSTRACT

Sulphate and dissolved organic matter (DOM) in freshwater systems may regulate the formation of methylmercury (MeHg), a potent neurotoxin that biomagnifies in aquatic ecosystems. While many boreal lakes continue to recover from decades of elevated atmospheric sulphate deposition, little research has examined whether historically high sulphate concentrations can result in persistently elevated MeHg production and accumulation in aquatic systems. This study used sediment from a historically sulphate-impacted lake and an adjacent reference lake in northwestern Ontario, Canada to investigate the legacy effects of sulphate pollution, as well as the effects of newly added sulphate, natural organic matter (NOM) of varying sulphur content and a sulphate reducing bacteria (SRB) inhibitor on enhancing or inhibiting the Hg methylation and demethylation activity (Kmeth and Kdemeth) in the sediment. We found that Kmeth and MeHg concentrations in sulphate-impacted lake sediment were significantly greater than in reference lake sediment. Further adding sulphate or NOM with different sulphur content to sediment of both lakes did not significantly change Kmeth. The addition of a SRB inhibitor resulted in lower Kmeth only in sulphate-impacted sediment, but methylation was not entirely depressed. Methylmercury demethylation potentials in sediment were consistent across lakes and experimental treatments, except for some impacts related to SRB inhibitor additions in the reference lake sediment. Overall, a broader community of microbes beyond SRB may be methylating Hg and demethylating MeHg in this system. This study reveals that legacies of sulphate pollution in boreal lakes may persist for decades in stimulating elevated Hg methylation in sediment.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Demethylation , Ecosystem , Environmental Monitoring , Geologic Sediments , Lakes , Mercury/analysis , Methylation , Sulfates , Sulfur , Sulfur Oxides , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 838(Pt 2): 156219, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35623531

ABSTRACT

Nanosilver (AgNP) is an anti-microbial agent widely used in consumer products, with significant potential for these nanoparticles to be released into aquatic environments. Laboratory studies involving short-term exposures of fish to AgNP show a range of toxicological effects, but these studies do not address potential responses in long-lived organisms resulting from chronic exposures. A collaborative study involving additions of AgNP to environmentally relevant concentrations over two field seasons took place at the IISD-Experimental Lakes Area, providing an opportunity to study the impacts of chronic exposures to long-lived fish species. In the present study, we evaluated the abundance and growth of an apex predator, Northern Pike (Esox lucius), collected from Lake 222 before, during and after the AgNP dosing period and compared results to those from a nearby unmanipulated lake (Lake 239). While the abundance of Northern Pike from Lake 222 during the study period was essentially stable, per capita availability of their primary prey species, Yellow Perch (Perca flavescens) declined by over 30%. Northern Pike fork length- and weight-at-age (indices of growth rate) declined following AgNP additions, most notably in age 4 and 5 fish. No similar changes in prey availability or growth were observed in Northern Pike from the reference lake. Body condition did not change in Northern Pike collected from either Lake 222 or Lake 239. Our results indicate that declines in the growth of Northern Pike chronically exposed to AgNP likely resulted from reduced prey availability but direct sublethal effects from AgNP exposure could also have been a factor. The persistence of reduced growth in Northern Pike two years after the cessation of AgNP additions highlight the potential legacy impacts of this contaminant once released into aquatic ecosystems.


Subject(s)
Esocidae , Perches , Animals , Ecosystem , Esocidae/physiology , Lakes , Seafood
7.
Proc Biol Sci ; 289(1966): 20212146, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34982951

ABSTRACT

Senescence-the deterioration of functionality with age-varies widely across taxa in pattern and rate. Insights into why and how this variation occurs are hindered by the predominance of laboratory-focused research on short-lived model species with determinate growth. We synthesize evolutionary theories of senescence, highlight key information gaps and clarify predictions for species with low mortality and variable degrees of indeterminate growth. Lake trout are an ideal species to evaluate predictions in the wild. We monitored individual males from two populations (1976-2017) longitudinally for changes in adult mortality (actuarial senescence) and body condition (proxy for energy balance). A cross-sectional approach (2017) compared young (ages 4-10 years) and old (18-37 years) adults for (i) phenotypic performance in body condition, and semen quality-which is related to fertility under sperm competition (reproductive senescence)-and (ii) relative telomere length (potential proxy for cellular senescence). Adult growth in these particular populations is constrained by a simplified foodweb, and our data support predictions of negligible senescence when maximum size is only slightly larger than maturation size. Negative senescence (aka reverse senescence) may occur in other lake trout populations where diet shifts allow maximum sizes to greatly exceed maturation size.


Subject(s)
Semen Analysis , Trout , Aging , Animals , Fertility , Male
8.
Mol Ecol ; 30(13): 3083-3096, 2021 07.
Article in English | MEDLINE | ID: mdl-32888228

ABSTRACT

Significant advances have been made towards surveying animal and plant communities using DNA isolated from environmental samples. Despite rapid progress, we lack a comprehensive understanding of the "ecology" of environmental DNA (eDNA), particularly its temporal and spatial distribution and how this is shaped by abiotic and biotic processes. Here, we tested how seasonal variation in thermal stratification and animal habitat preferences influences the distribution of eDNA in lakes. We sampled eDNA depth profiles of five dimictic lakes during both summer stratification and autumn turnover, each containing warm- and cool-water fishes as well as the cold-water stenotherm, lake trout (Salvelinus namaycush). Habitat use by S. namaycush was validated by acoustic telemetry and was significantly related to eDNA distribution during stratification. Fish eDNA became "stratified" into layers during summer months, reflecting lake stratification and the thermal niches of the species. During summer months, S. namaycush, which rarely ventured into shallow waters, could only be detected at the deepest layers of the lakes, whereas the eDNA of warm-water fishes was much more abundant above the thermocline. By contrast, during autumn lake turnover, the fish species assemblage as detected by eDNA was homogenous throughout the water column. These findings contribute to our overall understanding of the "ecology" of eDNA within lake ecosystems, illustrating how the strong interaction between seasonal thermal structure in lakes and thermal niches of species on very localized spatial scales influences our ability to detect species.


Subject(s)
DNA, Environmental , Ecosystem , Animals , Lakes , Seasons , Trout
9.
Arch Environ Contam Toxicol ; 79(3): 283-297, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33063196

ABSTRACT

Silver nanoparticles (AgNP) are widely used as antibacterial agents in both commercial products and for industrial applications. As such, AgNP has a high potential for release into freshwater environments. As part of a whole-lake ecosystem experiment to examine the impacts of AgNP exposure at low µg/L concentrations over multiple years, we evaluated biological responses in Yellow Perch (Perca flavescens) before, during, and after AgNP additions to a freshwater lake. Yellow Perch were monitored for responses to in situ AgNP additions at the cellular (suite of biomarkers), individual (growth, prey consumption, and metabolism), and population (abundance and gross prey consumption) scales. At the cellular level, several biomarkers of oxidative stress in liver tissues revealed down-regulation, including decreased mRNA levels of catalase and glutathione peroxidase in Yellow Perch collected during AgNP exposure, and elevated ratios of reduced to oxidized glutathione. At the individual level, Yellow Perch bioenergetic models revealed that prey consumption and total metabolism significantly declined during AgNP additions and remained depressed one year after AgNP addition. At the population level, Yellow Perch densities and gross prey consumption declined after AgNP was added to the lake. Together, these results reveal a holistic assessment of the negative impacts of chronic exposure to environmentally relevant AgNP concentrations (i.e., µg/L) on Yellow Perch at cellular, individual, and population levels.


Subject(s)
Lakes/chemistry , Metal Nanoparticles/toxicity , Perches/metabolism , Silver/toxicity , Water Pollutants, Chemical/toxicity , Animals , Catalase/metabolism , Ecosystem , Energy Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Models, Theoretical , Oxidative Stress/drug effects , Perches/growth & development
10.
Ecol Lett ; 23(6): 922-938, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32266766

ABSTRACT

The ecological consequences of winter in freshwater systems are an understudied but rapidly emerging research area. Here, we argue that winter periods of reduced temperature and light (and potentially oxygen and resources) could play an underappreciated role in mediating the coexistence of species. This may be especially true for temperate and subarctic lakes, where seasonal changes in the thermal environment might fundamentally structure species interactions. With climate change already shortening ice-covered periods on temperate and polar lakes, consideration of how winter conditions shape biotic interactions is urgently needed. Using freshwater fishes in northern temperate lakes as a case study, we demonstrate how physiological trait differences (e.g. thermal preference, light sensitivity) drive differential behavioural responses to winter among competing species. Specifically, some species have a higher capacity for winter activity than others. Existing and new theory is presented to argue that such differential responses to winter can promote species coexistence. Importantly, if winter is a driver of niche differences that weaken competition between, relative to within species, then shrinking winter periods could threaten coexistence by tipping the scales in favour of certain sets of species over others.


Subject(s)
Biodiversity , Water , Animals , Ice Cover , Lakes , Seasons
11.
J Anim Ecol ; 88(5): 702-716, 2019 05.
Article in English | MEDLINE | ID: mdl-30712263

ABSTRACT

We used acoustic telemetry and acceleration sensors to compare population-specific measures of the metabolic costs of an apex fish predator living in four separate lakes. We chose our study species and populations to provide a strong test of recent theoretical predictions that optimal foraging by an apex fish predator in a typical aquatic environment would be consistent with feeding to satiation rather than continuous feeding. We chose four populations where the primary prey type differed along a body size gradient (from small invertebrates to large planktivorous fish) and along a thermal accessibility gradient (from easily accessible cold-water pelagic prey to less accessible warm-water epilimnetic and littoral prey). We expected that these gradients in prey type would evoke distinctly different activity gradients depending on whether predators fed to satiation (e.g., less frequent "rest" detections where primary prey are smaller/less accessible) or fed continuously (e.g., fixed level of "rest" detections under all prey conditions). Our study organism was a fall spawning, cold-water visual apex predator (lake trout). Therefore, we focused our study on diel (early night, dawn, day, dusk, late night) changes in metabolic costs associated with summer feeding behaviour. The duration (~20 days) and fine temporal scale (~30 min) of our behavioural data provided a uniquely detailed picture of intra- and inter-population differences in activity patterns over a critical period in the annual growing season. In all populations, diel shifts in activity were qualitatively consistent with that expected of a visual predator (e.g., resting state detections were most frequent at night). Between-lake differences in daytime thermal experience were qualitatively consistent with between-lake differences in the location of primary prey (e.g., excursions to warm habitats were common in lakes with epilimnetic/littoral fish as primary prey and relatively rare in lakes with pelagic cold-water invertebrates/fish as primary prey). Daytime activity patterns were more consistent with the feeding pattern expected from feeding to satiation rather than continuous feeding: (a) individuals in all four populations exhibited clearly delineated bouts of resting behaviour and active behaviour; (b) the frequency of resting bouts and the resultant overall cost of daily activity were strongly associated with the size and accessibility of prey-in lakes with smaller and/or less accessible prey, predators rested less frequently, exhibited marginally higher costs when active and had higher overall daytime activity costs. Within each lake, similar changes in activity occurred concurrently with diel changes in prey accessibility/relative density.


Subject(s)
Lakes , Predatory Behavior , Animals , Ecosystem , Ecotype , Food Chain , Invertebrates
12.
Environ Sci Technol ; 52(19): 11114-11122, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30179475

ABSTRACT

A total of 15 kg of silver nanoparticles (AgNPs) was added continuously over two ice-free field seasons to a boreal lake (i.e., Lake 222) at the IISD Experimental Lakes Area in Canada. We monitored the accumulation of silver (Ag) in the tissues of yellow perch ( Perca flavescens) and northern pike ( Esox lucius) exposed to the AgNPs under environmentally relevant conditions. The greatest accumulation was observed in the liver tissues of pike, and a single pike sampled in the second year of additions had the highest concentration observed in liver of 5.1 micrograms per gram of wet weight. However, the Ag concentrations in gill and muscle tissue of both pike and perch did not exceed 0.35 micrograms per gram of wet weight. Following additions of AgNP, the Ag residues in fish tissues declined, with a half-life of Ag in pike liver of 119 days. Monitoring using passive sampling devices and single-particle inductively coupled plasma mass spectrometry during the AgNP addition phase confirmed that Ag nanoparticles were present in the water column and that estimated mean concentrations of Ag increased over time to a maximum of 11.5 µg/L. These data indicate that both a forage fish and a piscivorous fish accumulated Ag in a natural lake ecosystem dosed with AgNPs, leading to Ag concentrations in some tissues of the piscivorous species that were 3 orders of magnitude greater than the concentrations in the water.


Subject(s)
Metal Nanoparticles , Perches , Water Pollutants, Chemical , Animals , Canada , Ecosystem , Esocidae , Lakes , Silver
13.
Proc Natl Acad Sci U S A ; 114(37): 9912-9917, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28808011

ABSTRACT

There is a pressing need to understand how ecosystems will respond to climate change. To date, no long-term empirical studies have confirmed that fish populations exhibit adaptive foraging behavior in response to temperature variation and the potential implications this has on fitness. Here, we use an unparalleled 11-y acoustic telemetry, stable isotope, and mark-recapture dataset to test if a population of lake trout (Salvelinus namaycush), a cold-water stenotherm, adjusted its use of habitat and energy sources in response to annual variations in lake temperatures during the open-water season and how these changes translated to the growth and condition of individual fish. We found that climate influenced access to littoral regions in spring (data from telemetry), which in turn influenced energy acquisition (data from isotopes), and growth (mark-recapture data). In more stressful years, those with shorter springs and longer summers, lake trout had reduced access to littoral habitat and assimilated less littoral energy, resulting in reduced growth and condition. Annual variation in prey abundance influenced lake trout foraging tactics (i.e., the balance of the number and duration of forays) but not the overall time spent in littoral regions. Lake trout greatly reduced their use of littoral habitat and occupied deep pelagic waters during the summer. Together, our results provide clear evidence that climate-mediated behavior can influence the dominant energy pathways of top predators, with implications ranging from individual fitness to food web stability.


Subject(s)
Feeding Behavior/physiology , Trout/growth & development , Trout/physiology , Animals , Climate Change , Cold Temperature , Ecosystem , Food Chain , Lakes , Temperature , Trout/metabolism , Water Pollutants, Chemical/analysis
14.
Ecology ; 98(6): 1681-1692, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28369860

ABSTRACT

Dreissenid mussels, including the zebra (Dreissena polymorpha) and quagga (Dreissena rostiformus bugensis) mussel, are invasive species known for their capacity to act as ecosystem engineers. They have caused significant changes in the many freshwater systems they have invaded by increasing water clarity, reducing primary productivity, and altering zooplankton and benthic invertebrate assemblages. What is less clear is how their ecosystem engineering effects manifest up the food web to impact higher trophic levels, including fish. Here, we use a biological tracer (stable isotopes of carbon and nitrogen) to analyze long-term and broad-scale trends in the resource use of benthivorous lake whitefish (Coregonus clupeaformis) in the Laurentian Great Lakes, where dreissenid mussels have become established in each lake except Lake Superior. We measured stable isotope ratios from archived material (fish scale samples) collected over several decades by multiple agencies and from 14 locations around the Great Lakes. In the majority of locations, the δ13 C of lake whitefish increased following the establishment of dreissenid mussels. Trends in δ15 N were less clear, but significant breakpoints in the time series occurred within 5 yr of dreissenid establishment in several locations, followed by declines in δ15 N. In contrast, isotopic signatures in Lake Superior locations did not show these trends. Our results provide evidence that lake whitefish shifted toward greater reliance on nearshore benthic production, supporting the theory that fundamental energy pathways are changed when dreissenid mussels become established. Importantly, these effects were noted across multiple, large, and complex ecosystems spanning a broad geographic area. Our study underscores the potential for aquatic invasive species to alter key ecosystem services as demonstrated here through their impacts on energy pathways supporting a commercially harvested fish species.


Subject(s)
Dreissena/physiology , Ecosystem , Fishes/physiology , Introduced Species , Animals , Bivalvia , Fisheries/statistics & numerical data , Food Chain , Lakes
15.
Environ Pollut ; 225: 223-231, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28376390

ABSTRACT

Microplastics are an emerging contaminant of concern in aquatic ecosystems. To better understand microplastic contamination in North American surface waters, we report for the first time densities of microplastics in Lake Winnipeg, the 11th largest freshwater body in the world. Samples taken 2014 to 2016 revealed similar or significantly greater microplastic densities in Lake Winnipeg compared with those reported in the Laurentian Great Lakes. Plastics in the lake were largely of secondary origin, overwhelmingly identified as fibres. We detected significantly greater densities of microplastics in the north basin compared to the south basin of the lake in 2014, but not in 2015 or 2016. Mean lake-wide densities across all years were comparable and not statistically different. Scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that 23% of isolated particles on average were not plastic. While the ecological impact of microplastics on aquatic ecosystems is still largely unknown, our study contributes to the growing evidence that microplastic contamination is widespread even around sparsely-populated freshwater ecosystems, and provides a baseline for future study and risk assessments.


Subject(s)
Environmental Monitoring , Lakes/chemistry , Plastics/analysis , Water Pollutants, Chemical/analysis , Canada , Ecosystem , Plastics/chemistry
16.
Environ Toxicol Chem ; 36(10): 2722-2729, 2017 10.
Article in English | MEDLINE | ID: mdl-28419542

ABSTRACT

Nanosilver (nAg) has been incorporated into many consumer products, including clothing and washing machines, because of its antimicrobial properties. Consequently, the potential for its release into aquatic environments is of significant concern. Documented toxic effects on fish include altered gene expression, gill damage, and impaired gas exchange, as well as mortality at high nAg concentrations. The present study reports the effects of nAg on the metabolism of rainbow trout (Oncorhynchus mykiss). Fish were exposed to environmentally relevant concentrations (0.28 ± 0.02 µg/L) and higher (47.60 ± 5.13 µg/L) for 28 d, after which their standard metabolic rate (SMR), forced maximum metabolic rate (MMRf ), and spontaneous maximum metabolic rate (MMRs ) were measured. There was no effect observed in SMR, MMRf , or MMRs , suggesting that nAg is unlikely to directly affect fish metabolism. On average, MMRs tended to be greater than MMRf , and most MMRs occurred when room lighting increased. The timing of MMRf chase protocols was found to affect both MMRf and SMR estimates, in that chasing fish before respirometric experiments caused higher MMRf estimates and lower SMR estimates. Although compounded effects involving nAg and other environmental stressors remain unknown, the present study indicates that the tested range of nAg is unlikely to constrain fish metabolism. Environ Toxicol Chem 2017;36:2722-2729. © 2017 SETAC.


Subject(s)
Gills/metabolism , Metal Nanoparticles/chemistry , Oncorhynchus mykiss/metabolism , Silver/metabolism , Water Pollutants, Chemical/metabolism , Animals , Gills/drug effects , Metal Nanoparticles/toxicity , Oxygen Consumption/drug effects , Silver/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
17.
Environ Toxicol Chem ; 36(6): 1606-1613, 2017 06.
Article in English | MEDLINE | ID: mdl-27859556

ABSTRACT

Nanosilver (nAg) is a nanoparticle commonly incorporated into consumer products for its antimicrobial properties that has been detected in aquatic environments. Toxic effects of nAg on fish have been observed, and nAg may induce a stress response in fish in the form of increased blood plasma cortisol. Effects of nAg exposure on rainbow trout (Oncorhynchus mykiss) were investigated over a 28-d period using blood plasma cortisol concentrations as an indicator of stress. Several morphometric measures (growth, Fulton's condition factor, and hepatosomatic index [HSI]) were also taken during the experiment to investigate potential whole-body effects of exposure, and concentrations of nAg in fish muscle tissue were measured. Fish were exposed to environmentally relevant (average 0.28 µg/L) and higher (average 47.60 µg/L) exposure concentrations of nAg. The results showed a significant increase in blood plasma cortisol for both exposure treatments. A significant effect on HSI by treatment dependent on exposure time was also observed, although no obvious trend was detected, whereas other morphometric measures were not affected by nAg exposure. In addition, Ag was detected in fish muscle tissue. The results indicate that although nAg did engage the stress response in fish, it did not affect growth or condition under the experimental conditions and time frame investigated. Environ Toxicol Chem 2017;36:1606-1613. © 2016 SETAC.


Subject(s)
Hydrocortisone/blood , Metal Nanoparticles/toxicity , Oncorhynchus mykiss/blood , Silver/toxicity , Animals , Metal Nanoparticles/chemistry , Muscles/chemistry , Oncorhynchus mykiss/growth & development , Silver/chemistry , Stress, Physiological/drug effects , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
18.
J Environ Radioact ; 153: 222-230, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26803403

ABSTRACT

To better understand background radiation levels in country foods, a total of 125 fish samples were collected from three lakes (Lake 226, Lake 302 and Lake 305) in the Experimental Lakes Area (ELA) in Ontario of Canada during the summer of 2014. Concentrations of naturally occurring radionuclides ((226)Ra, (210)Pb and (210)Po) as well as anthropogenic radionuclides ((134)Cs and (137)Cs) were measured. This study confirmed that (210)Po is the dominant contributor to radiation doses resulting from fish consumption. While concentrations of (210)Pb and (226)Ra were below conventional detection limits, (210)Po was measured in almost all fish samples collected from the ELA. The average concentration was about 1.5 Bq/kg fresh weight (fw). None of the fish samples analysed in this study contained any detectable levels of (134)Cs. An average (137)Cs level of 6.1 Bq/kg fw was observed in freshwater fishes harvested in the ELA, almost twice that of samples measured in the National Capital Region of Canada in 2014 and more than 20 times higher than the levels observed in marine fish harvested from the Canadian west coast in 2013 and 2014. However, it is important to note that the concentrations of (137)Cs in fish samples from these inland lakes are considered very low from a radiological protection perspective. The resulting radiation dose for people from fish consumption would be a very small fraction of the annual dose from exposure to natural background radiation in Canada. The results indicate that fishes from inland lakes do not pose a radiological health concern.


Subject(s)
Background Radiation , Cesium Radioisotopes/analysis , Fishes/metabolism , Food Contamination, Radioactive/analysis , Lakes/analysis , Radiation Monitoring , Water Pollutants, Radioactive/analysis , Animals , Cypriniformes/metabolism , Esocidae/metabolism , Half-Life , Ontario , Salmonidae/metabolism
19.
Philos Trans R Soc Lond B Biol Sci ; 369(1656)2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25405967

ABSTRACT

Endocrine-disrupting chemicals (EDCs) in municipal effluents directly affect the sexual development and reproductive success of fishes, but indirect effects on invertebrate prey or fish predators through reduced predation or prey availability, respectively, are unknown. At the Experimental Lakes Area in northwestern Ontario, Canada, a long-term, whole-lake experiment was conducted using a before-after-control-impact design to determine both direct and indirect effects of the synthetic oestrogen used in the birth control pill, 17α-ethynyloestradiol (EE2). Algal, microbial, zooplankton and benthic invertebrate communities showed no declines in abundance during three summers of EE2 additions (5-6 ng l(-1)), indicating no direct toxic effects. Recruitment of fathead minnow (Pimephales promelas) failed, leading to a near-extirpation of this species both 2 years during (young-of-year, YOY) and 2 years following (adults and YOY) EE2 additions. Body condition of male lake trout (Salvelinus namaycush) and male and female white sucker (Catostomus commersonii) declined before changes in prey abundance, suggesting direct effects of EE2 on this endpoint. Evidence of indirect effects of EE2 was also observed. Increases in zooplankton, Chaoborus, and emerging insects were observed after 2 or 3 years of EE2 additions, strongly suggesting indirect effects mediated through the reduced abundance of several small-bodied fishes. Biomass of top predator lake trout declined by 23-42% during and after EE2 additions, most probably an indirect effect from the loss of its prey species, the fathead minnow and slimy sculpin (Cottus cognatus). Our results demonstrate that small-scale studies focusing solely on direct effects are likely to underestimate the true environmental impacts of oestrogens in municipal wastewaters and provide further evidence of the value of whole-ecosystem experiments for understanding indirect effects of EDCs and other aquatic stressors.


Subject(s)
Cyprinidae/physiology , Ethinyl Estradiol/toxicity , Food Chain , Fresh Water , Invertebrates/drug effects , Animals , Ethinyl Estradiol/chemistry , Humans , Male , Ontario , Reproduction/drug effects , Time Factors , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
20.
Oecologia ; 159(4): 789-802, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19214590

ABSTRACT

Dreissenid mussels (Dreissena polymorpha and D. bugensis) have re-engineered Great Lakes ecosystems since their introduction in the late 1980s. Dreissenids can have major indirect impacts on profundal habitats by redirecting nutrients and energy away from pelagic production (which supplies profundal production) and depositing nutrients and energy in the nearshore zones that they occupy. However, strong empirical evidence for the effects of this redirection of resources on fish populations is currently lacking. Here, we report significant shifts in isotopic signatures, depth distribution and diets of a coldwater profundal fish population that are all consistent with a greater reliance on nearshore resources after the establishment of dreissenid mussels in South Bay, Lake Huron. Isotopic signatures of scales collected from 5-year-old lake whitefish (Coregonus clupeaformis) demonstrated remarkable stability over the 50-year period prior to the establishment of dreissenids (1947-1997) and a sudden and significant change in isotopic signatures (3 per thousand enrichment in delta13C and 1 per thousand depletion in delta(15)N) after their establishment (2001-2005). These dramatic shifts in isotopic signatures were accompanied by a coincident shift in the mean depth of capture of lake whitefish towards the nearshore. A comparison of previously unpublished pre-invasion diets of lake whitefish from South Bay with contemporary diets collected between 2002 and 2005 also indicate a greater reliance on nearshore prey after the invasion of dreissenid mussels. This study is the first to report changes in the carbon source available to lake whitefish associated with restructured benthic communities after the appearance of dreissenid mussels. Further, this study contributes to a growing body of work that demonstrates the ecological insights that can be gained through isotopic analysis of archived fish bony tissues in ecosystems that have experienced significant levels of disturbance.


Subject(s)
Animal Nutritional Physiological Phenomena , Bone and Bones/chemistry , Diet , Food Chain , Salmonidae/physiology , Animals , Bivalvia , Carbon Isotopes/analysis , Fresh Water , Nitrogen Isotopes/analysis , Ontario , Population Dynamics , Salmonidae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...