Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 46(2): 528-543, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30582871

ABSTRACT

PURPOSE: The purpose of this study was to develop a novel patient-specific pixel-based weighting factor dual-energy (PP-DE) algorithm to effectively suppress bone throughout the image and overcome the limitation of the conventional DE algorithm with constant weighting factor which is restricted to regions with uniform patient thickness. Additionally, to derive theoretical expressions to describe the dependence of the weighting factors on several imaging parameters and validate them with measurement. METHODS: A step phantom was constructed consisting of slabs of solid water and bone materials. Thicknesses of bone ranged [0-6] cm in one direction and solid water [5-30] cm in the other direction. Projection images at 60 and 140 kVp were acquired using a clinical imaging system. Optimal weighting factors were found by iteratively varying it in the range [0-1.4], where bone and soft-tissue contrast-to-noise ratio (CNR) reached zero. Bone and soft-tissue digitally reconstructed thicknesses were created using computed tomography (CT) images of a Rando phantom and ray tracing techniques. A weighting factor image (ω) was calculated using digitally reconstructed thicknesses (DRTs) and precalculated weighting factors from the step phantom. This ω image was then used to generate a PP-DE image. The PP-DE image was compared to the conventional DE image which uses a constant weighting factor throughout the image. The effect of the misaligned ω image on PP-DE images was investigated by acquiring LE and HE images at various shifts of Rando phantom. A rigid registration was used based on mutual information algorithm in Matlab. The signal-to-noise ratios (SNR) were calculated in the step phantom for the PP-DE image and compared to that of conventional DE technique. Analytical expressions for theoretical weighting factors were derived which included various effects such as beam hardening, scatter, and detector response. The analytical expressions were simulated in Spektr3.0 for different bone and solid water thicknesses as per the step phantom. A tray of steel pins was constructed and used with the step phantom to remove the scattered radiation. The simulated theoretical weighting factors were validated by comparing to those from the step phantom measurement. RESULTS: Optimal weighting factor values for the step phantom varied from 0.633 to 1.372 depending on region thickness. Thicker regions required larger weighting factors for bone cancellation. The PP-DE image of the Rando phantom favorably cancelled both ribs and spine, whereas in the conventional DE image, only one could be cancelled at a time. The misaligned ω image was less effective in removing all bones indicating the importance of alignment as part of the PP-DE algorithm implementation. The SNRs for the PP-DE image was larger than those of the conventional DE images for regions which required smaller weighting factors for bone suppression. Comparisons of measured and simulated weighting factors demonstrated a 3% agreement for all bone overlapped regions except for the thickest region with 30 cm of solid water overlapped with 6 cm bone where the signal was lost due to excess attenuation. CONCLUSIONS: A novel PP-DE algorithm was developed which can create higher quality DE images with enhanced bone cancellation and improved noise characteristics compared to conventional DE technique. In addition, theoretical weighting factor expressions were derived and validated against measurement.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed/instrumentation , Algorithms , Bone and Bones/diagnostic imaging , Humans , Phantoms, Imaging
2.
Appl Radiat Isot ; 120: 1-6, 2017 02.
Article in English | MEDLINE | ID: mdl-27889549

ABSTRACT

The feasibility of measuring arsenic and selenium contents in a single nail clipping was investigated using a small-focus portable X-ray fluorescence (XRF) instrument with monochromatic excitation beams. Nail clipping phantoms supplemented with arsenic and selenium to produce materials with 0, 5, 10, 15, and 20µg/g were used for calibration purposes. In total, 10 different clippings were analyzed at two different measurement positions. Energy spectra were fit with detection peaks for arsenic Kα, selenium Kα, arsenic Kß, selenium Kß, and bromine Kα characteristic X-rays. Data analysis was performed under two distinct conditions of fitting constraint. Calibration lines were established from the amplitude of each of the arsenic and selenium peaks as a function of the elemental contents in the clippings. The slopes of the four calibration lines were consistent between the two conditions of analysis. The calculated minimum detection limit (MDL) of the method, when considering the Kα peak only, ranged from 0.210±0.002µg/g selenium under one condition of analysis to 0.777±0.009µg/g selenium under another. Compared with previous portable XRF nail clipping studies, MDLs were substantially improved for both arsenic and selenium. The new measurement technique had the additional benefits of being short in duration (~3min) and requiring only a single nail clipping. The mass of the individual clipping used did not appear to play a major role in signal strength, but positioning of the clipping is important.


Subject(s)
Arsenic/analysis , Nails/chemistry , Selenium/analysis , Spectrometry, X-Ray Emission/instrumentation , Arsenic/toxicity , Calibration , Environmental Exposure , Feasibility Studies , Humans , Limit of Detection , Phantoms, Imaging , Selenium/toxicity , Spectrometry, X-Ray Emission/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...