Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 87(4): 652-663, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38359463

ABSTRACT

Castanea sativa wood is a rich source of hydrolyzable tannins, known for their diverse bioactivities. To investigate these bioactive properties further, it is crucial to isolate and characterize hydrophilic compounds effectively. To address this issue, we developed a centrifugal partition chromatography (CPC) method and applied it to an aqueous C. sativa wood extract. We determined the partition coefficients (KD) of the six major compounds using four butanol-/water-based biphasic solvent systems. Initially, we utilized the n-butanol/propanol/water (3:1:4, v/v/v) systems for the first fractionation step. Subsequently, we employed the water/methyl tert-butyl ether/butanol/acetone (8:5:3:4, v/v/v/v) system to fractionate moderately and highly hydrophilic fractions. We calculated the KD values for major compounds of the most hydrophilic fractions using the butanol/ethanol/water (4:1:5, v/v/v) and butanol/isopropanol/water (2:1:3, v/v/v) systems. In total, we isolated 23 compounds through a combination of CPC, size exclusion chromatography, and preparative HPLC. Among these compounds, six have never been previously described. We characterized them by 1D and 2D NMR experiments and high-resolution mass spectroscopy acquisitions.


Subject(s)
Fagaceae , Hydrolyzable Tannins , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/isolation & purification , Fagaceae/chemistry , Molecular Structure , Wood/chemistry , Plant Extracts/chemistry
2.
J Agric Food Chem ; 71(11): 4488-4497, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36912343

ABSTRACT

Grapevine co-products, as canes, represent a source of compounds of interest to control vineyard diseases with a sustainable approach. We chose to study an extract that we produced from grapevine trunk and roots. This extract, enriched in complex stilbenes, strongly reduced mycelial growth and spore germination of Botrytis cinerea, the fungal agent causing gray mold. The most active stilbenes were resveratrol, r-viniferin, and ε-viniferin. This grapevine extract also inhibited the production of Botrytis laccases. Conversely, Botrytis secretome metabolized resveratrol into δ-viniferin and pallidol (2 dimers); and ε-viniferin, a dimer, into hopeaphenol, r-viniferin, and r2-viniferin (3 tetramers). r-Viniferin and hopeaphenol (2 tetramers) were not metabolized. The biotransformed extract maintained an effective antimycelial activity. This study provides evidence that a grapevine extract enriched in oligomerized stilbenes exerts different anti-Botrytis activities, notwithstanding the ability of the fungus to metabolize some stilbenes.


Subject(s)
Stilbenes , Vitis , Resveratrol/pharmacology , Antifungal Agents , Vitis/metabolism , Stilbenes/pharmacology , Stilbenes/metabolism , Plant Extracts/pharmacology
3.
Pharmaceuticals (Basel) ; 13(10)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33008087

ABSTRACT

Steatosis is characterized primarily by excessive lipid accumulation in the form of triglycerides in the liver. Although resveratrol shows a low bioavailability, it has significant positive effects on steatosis. The aim of this study was to analyze whether some phase II and microbial resveratrol metabolites (trans-resveratrol-4'-O-glucuronide (R-4G); trans-resveratrol-3-O-glucuronide (R-3G); trans-resveratrol-3-O-sulfate (R-S) and dihydro-resveratrol (DH-R) were effective in reducing hepatocyte fat accumulation. An in vitro model mimicking the hepatocyte situation in fatty liver was developed by incubating mouse AML12 hepatocytes with palmitic acid (PA). For cell treatments, hepatocytes were incubated with 1, 10, or 25 µM resveratrol or its metabolites. Triglycerides and cell viability were assessed using commercial kits. Protein expression of enzymes and transporters involved in triglyceride metabolism were analyzed by western blot. We show for the first time that resveratrol and all the tested metabolites, at 1 µM, partially prevented lipid accumulation induced by the saturated fatty acid PA in AML12 hepatocytes. This effect was mainly due to the inhibition of de novo lipogenesis. This demonstrates that the low bioavailability of resveratrol is not as big a problem as it was thought to be, because resveratrol metabolites contribute to the delipidating effects of the parent compound.

4.
Molecules ; 22(5)2017 May 03.
Article in English | MEDLINE | ID: mdl-28467376

ABSTRACT

ε-Viniferin is a resveratrol dimer that possesses antioxidant or anti-inflammatory activities. However little is known about the metabolism of this oligostilbene. This study was thus undertaken as a first approach to identify and characterize the metabolites of ε-viniferin and to describe the kinetic profile of their appearance in humans and rats. The glucuronides and sulfates of ε-viniferin were first obtained by chemical hemi-synthesis and were fully characterized by UPLC-MS and NMR spectroscopy. Then, ε-viniferin was incubated with human or rat S9 liver fractions that led to the formation of four glucuronoconjugates and four sulfoconjugates. In both species, ε-viniferin was subjected to an intense metabolism as 70 to 80% of the molecule was converted to glucuronides and sulfates. In humans, the hepatic clearance of ε-viniferin (Vmax/Km) for glucuronidation and sulfation were 4.98 and 6.35 µL/min/mg protein, respectively, whereas, in rats, the hepatic clearance for glucuronidation was 20.08 vs. 2.59 µL/min/mg protein for sulfation. In humans, three major metabolites were observed: two glucuronides and one sulfate. By contrast, only one major glucuronide was observed in rats. This strong hepatic clearance of ε-viniferin in human and rat could explain its poor bioavailability and could help to characterize its active metabolites.


Subject(s)
Benzofurans/metabolism , Glucuronides/metabolism , Stilbenes/metabolism , Sulfates/metabolism , Animals , Benzofurans/chemistry , Glucuronic Acid/chemistry , Glucuronic Acid/metabolism , Glucuronides/chemistry , Humans , Inactivation, Metabolic , Liver/enzymology , Rats , Stilbenes/chemistry , Sulfates/chemistry
5.
J Agric Food Chem ; 65(13): 2711-2718, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28288509

ABSTRACT

Stilbene-enriched extracts from Vitis vinifera waste (cane, wood, and root) were characterized by UHPLC-MS. Eleven stilbenes were identified and quantified as follows: ampelopsin A, (E)-piceatannol, pallidol, (E)-resveratrol, hopeaphenol, isohopeaphenol, (E)-ε-viniferin, (E)-miyabenol C, (E)-ω-viniferin, r2-viniferin, and r-viniferin. The fungicide concentration inhibiting 50% of growth of Plasmopara viticola sporulation (IC50) was determined for the extracts and also for the main compounds isolated. r-Viniferin followed by hopeaphenol and r2-viniferin showed low IC50 and thus high efficacy against Plasmopara viticola. Regarding stilbene extracts, wood extract followed by root extract showed the highest antifungal activities. These data suggest that stilbene complex mixtures from Vitis vinifera waste could be used as a cheap source of bioactive stilbenes for the development of natural fungicides.


Subject(s)
Fungicides, Industrial/pharmacology , Oomycetes/drug effects , Plant Extracts/pharmacology , Stilbenes/pharmacology , Vitis/chemistry , Waste Products/analysis , Fungicides, Industrial/chemistry , Fungicides, Industrial/isolation & purification , Molecular Structure , Oomycetes/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Roots/microbiology , Stilbenes/chemistry , Stilbenes/isolation & purification
6.
Food Chem ; 202: 212-20, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-26920287

ABSTRACT

Several cultivars of peach fruit (Prunus persica L.) were investigated. Their phenolic composition and concentration were assessed by LC-MS. Concentrations were calculated in mg per g of dry weight extract. Their antioxidant capacity (Folin-Ciocalteu, ORAC, DPPH, ABTS, PFRAP and ICA), inhibitory property against ß-amyloid and α-synuclein fibril formation and protective capacity against Aß-induced toxicity on PC12 cell lines (viability assessed by MTT assay and intracellular ROS production by DCFH-DA assay) were evaluated. Fifteen different phenolic compounds were identified and quantified. In particular, new isorhamnetin derivatives were identified. Phenolic contents were ranged between 19 and 82mg/g. Spring Belle extract had the highest content and Romea the lowest. Except for the ICA assay, a good correlation between phenolic content and the antioxidant capacities of peach fruit extracts was found, indicating that phenolic compounds are major contributors to their antioxidant capacity. Results indicate that the phenolic extract of peach cultivars inhibits Aß and αS fibril formation and protects PC12 cell lines against Aß-induced toxicity.


Subject(s)
Fruit/chemistry , Phenols/analysis , Prunus persica , Animals , Antioxidants/analysis , Antioxidants/pharmacology , Chromatography, Liquid , Fluoresceins , Mass Spectrometry , PC12 Cells , Phenols/chemistry , Phenols/pharmacology , Rats , Reactive Oxygen Species/chemistry
7.
J Agric Food Chem ; 61(47): 11392-9, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24171397

ABSTRACT

Grapevine canes are rich in resveratrol and its complex derivatives. These compounds have many biological activities and are needed mainly for health purposes. Canes, which are often wasted, can be used to produce these high-value compounds at low cost. We studied sixteen Vitis vinifera L. cultivars among the most widely cultivated ones worldwide. Polyphenols were extracted from their canes and identified by liquid chromatography-nuclear magnetic resonance spectroscopy. We accurately determined the content of E-ε-viniferin, E-resveratrol, E-piceatannol, and vitisin B and, for the first time, that of hopeaphenol and miyabenol C. The canes did not contain these major stilbene compounds in similar proportions, and their abundance and order of abundance varied according to the cultivar. For instance, Pinot noir has very high levels of E-resveratrol and E-ε-viniferin; Gewurztraminer has very high levels of vitisin B, and Carignan and Riesling have very high levels of hopeaphenol. These findings suggest that the right cultivar should be used to obtain the highest yield of a polyphenol of interest.


Subject(s)
Polyphenols/analysis , Stilbenes/analysis , Vitis/chemistry , Benzofurans/analysis , Chromatography, Liquid/methods , Phenols/analysis , Plant Stems/chemistry , Resveratrol , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...