Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 26(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38392404

ABSTRACT

Graph distance measures have emerged as an effective tool for evaluating the similarity or dissimilarity between graphs. Recently, there has been a growing trend in the application of movie networks to analyze and understand movie stories. Previous studies focused on computing the distance between individual characters in narratives and identifying the most important ones. Unlike previous techniques, which often relied on representing movie stories through single-layer networks based on characters or keywords, a new multilayer network model was developed to allow a more comprehensive representation of movie stories, including character, keyword, and location aspects. To assess the similarities among movie stories, we propose a methodology that utilizes a multilayer network model and layer-to-layer distance measures. We aim to quantify the similarity between movie networks by verifying two aspects: (i) regarding many components of the movie story and (ii) quantifying the distance between their corresponding movie networks. We tend to explore how five graph distance measures reveal the similarity between movie stories in two aspects: (i) finding the order of similarity among movies within the same genre, and (ii) classifying movie stories based on genre. We select movies from various genres: sci-fi, horror, romance, and comedy. We extract movie stories from movie scripts regarding character, keyword, and location entities to perform this. Then, we compute the distance between movie networks using different methods, such as the network portrait divergence, the network Laplacian spectra descriptor (NetLSD), the network embedding as matrix factorization (NetMF), the Laplacian spectra, and D-measure. The study shows the effectiveness of different methods for identifying similarities among various genres and classifying movies across different genres. The results suggest that the efficiency of an approach on a specific network type depends on its capacity to capture the inherent network structure of that type. We propose incorporating the approach into movie recommendation systems.

2.
Appl Netw Sci ; 2(1): 23, 2017.
Article in English | MEDLINE | ID: mdl-30443578

ABSTRACT

Knowledge is created and transmitted through generations, and innovation is often seen as a process generated from collective intelligence. There is rising interest in studying how innovation emerges from the blending of accumulated knowledge, and from which path an innovation mostly inherits. A citation network can be seen as a perfect example of one generative process leading to innovation. However, the impact and influence of scientific publication are always difficult to capture and measure. We offer a new take on investigating how the knowledge circulates and is transmitted, inspired by the notion of "stream of knowledge". We propose to look at this question under the lens of flows in directed acyclic graphs (DAGs). In this framework inspired by the work of Strahler, we can also account for other well known measures of influence such as the h-index. We propose then to analyze flows of influence in a citation networks as an ascending flow. From this point on, we can take a finer look at the diffusion of knowledge through the lens of a multiplex network. In this network, each citation of a specific work constitutes one layer of interaction. Within our framework, we design three measures of multiplex flows in DAGs, namely the aggregated, sum and selective flow, to better understand how citations are influenced. We conduct our experiments with the arXiv HEP-Th dataset, and find insights through the visualization of these multiplex networks.

3.
Appl Netw Sci ; 2(1): 30, 2017.
Article in English | MEDLINE | ID: mdl-30443584

ABSTRACT

Online communities are used across several fields of human activities, as environments for large-scale collaboration. Most successful ones employ professionals, sometimes called "community managers" or "moderators", for tasks including onboarding new participants, mediating conflict, and policing unwanted behaviour. Network scientists routinely model interaction across participants in online communities as social networks. We interpret the activity of community managers as (social) network design: they take action oriented at shaping the network of interactions in a way conducive to their community's goals. It follows that, if such action is successful, we should be able to detect its signature in the network itself. Growing networks where links are allocated by a preferential attachment mechanism are known to converge to networks displaying a power law degree distribution. Growth and preferential attachment are both reasonable first-approximation assumptions to describe interaction networks in online communities. Our main hypothesis is that managed online communities are characterised by in-degree distributions that deviate from the power law form; such deviation constitutes the signature of successful community management. Our secondary hypothesis is that said deviation happens in a predictable way, once community management practices are accounted for. If true, these hypotheses would give us a simple test for the effectiveness of community management practices. We investigate the issue using (1) empirical data on three small online communities and (2) a computer model that simulates a widely used community management activity called onboarding. We find that onboarding produces in-degree distributions that systematically deviate from power law behaviour for low-values of the in-degree; we then explore the implications and possible applications of the finding.

4.
Appl Netw Sci ; 2(1): 27, 2017.
Article in English | MEDLINE | ID: mdl-31187052

ABSTRACT

[This corrects the article DOI: 10.1007/s41109-017-0035-2.].

5.
Appl Netw Sci ; 1(1): 4, 2016.
Article in English | MEDLINE | ID: mdl-30533496

ABSTRACT

In the age of data processing, news videos are rich mines of information. After all, the news are essentially created to convey information to the public. But can we go beyond what is directly presented to us and see a wider picture? Many works already focus on what we can discover and understand from the analysis of years of news broadcasting. These analysis bring monitoring and understanding of the activity of public figures, political strategies, explanation and even prediction of critical media events. Such tools can help public figures in managing their public image, as well as support the work of journalists, social scientists and other media experts. News analysis can also be seen from the lens of complex systems, gathering many types of entities, attributes and interactions over time. As many public figures intervene in different news stories, a first interesting task is to observe the social interactions between these actors. Towards this goal, we propose to use video analysis to automatise the process of constructing social networks directly from news video archives. In this paper we are introducing a system deriving multiple social networks from face detections in news videos. We present preliminary results obtained from analysis of these networks, by monitoring the activity of more than a hundred public figures. We finally use these networks as a support for political studies and we provide an overview of the political landscape presented by the Japanese public broadcaster NHK over a decade of the 7 PM news archives.

6.
IEEE Trans Vis Comput Graph ; 19(11): 1820-32, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24029903

ABSTRACT

The emergence of very large hierarchies that result from the increase in available data raises many problems of visualization and navigation. On data sets of such scale, classical graph drawing methods do not take advantage of certain human cognitive skills such as shape recognition. These cognitive skills could make it easier to remember the global structure of the data. In this paper, we propose a method that is based on the use of nested irregular shapes. We name it GosperMap as we rely on the use of a Gosper Curve to generate these shapes. By employing human perception mechanisms that were developed by handling, for example, cartographic maps, this technique facilitates the visualization and navigation of a hierarchy. An algorithm has been designed to preserve region containment according to the hierarchy and to set the leaves' sizes proportionally to a property, in such a way that the size of nonleaf regions corresponds to the sum of their children's sizes. Moreover, the input ordering of the hierarchy's nodes is preserved, i.e., the areas that represent two consecutive children of a node in the hierarchy are adjacent to one another. This property is especially useful because it guarantees some stability in our algorithm. We illustrate our technique by providing visualization examples of the repartition of tax money in the US over time. Furthermore, we validate the use of the GosperMap in a professional documentation context and show the stability and ease of memorization for this type of map.

SELECTION OF CITATIONS
SEARCH DETAIL
...