Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 84(5): 055115, 2013 May.
Article in English | MEDLINE | ID: mdl-23742597

ABSTRACT

We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

2.
Rev Sci Instrum ; 82(6): 065112, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21721735

ABSTRACT

We describe the design of a novel type of storage device currently under construction at Stockholm University, Sweden, using purely electrostatic focussing and deflection elements, in which ion beams of opposite charges are confined under extreme high vacuum cryogenic conditions in separate "rings" and merged over a common straight section. The construction of this double electrostatic ion ring experiment uniquely allows for studies of interactions between cations and anions at low and well-defined internal temperatures and centre-of-mass collision energies down to about 10 K and 10 meV, respectively. Position sensitive multi-hit detector systems have been extensively tested and proven to work in cryogenic environments and these will be used to measure correlations between reaction products in, for example, electron-transfer processes. The technical advantages of using purely electrostatic ion storage devices over magnetic ones are many, but the most relevant are: electrostatic elements which are more compact and easier to construct; remanent fields, hysteresis, and eddy-currents, which are of concern in magnetic devices, are no longer relevant; and electrical fields required to control the orbit of the ions are not only much easier to create and control than the corresponding magnetic fields, they also set no upper mass limit on the ions that can be stored. These technical differences are a boon to new areas of fundamental experimental research, not only in atomic and molecular physics but also in the boundaries of these fields with chemistry and biology. For examples, studies of interactions with internally cold molecular ions will be particular useful for applications in astrophysics, while studies of solvated ionic clusters will be of relevance to aeronomy and biology.

3.
Phys Rev Lett ; 89(16): 163201, 2002 Oct 14.
Article in English | MEDLINE | ID: mdl-12398718

ABSTRACT

We have used the ion storage ring CRYRING and its internal gas-jet target and recoil-ion-momentum spectrometer to measure absolute cross sections for transfer ionization (TI: p+He-->H0+He2++e(-)) in 2.5-4.5 MeV p-He collisions with separate Thomas (TTI) and kinematic (KTI) TI contributions. The probability for electron emission in kinematical capture decreases with increasing velocity and appears to approach the photoionization shakeoff value (1.63%) [T. Aberg, Phys. Rev. A 2, 1726 (1970)]]. The velocity dependence of the TTI cross section is consistent with the theoretically predicted v(-11) scaling [J. S. Briggs and K. Taulbjerg, J. Phys. B 12, 2565 (1979)]].

4.
Phys Rev Lett ; 88(17): 174801, 2002 Apr 29.
Article in English | MEDLINE | ID: mdl-12005764

ABSTRACT

Some years ago it was found at GSI in Darmstadt that the momentum spread of electron-cooled beams of highly charged ions dropped abruptly to very low values when the particle number decreased to 10 000 or less. This has been interpreted as an ordering of the ions, such that they line up after one another in the ring. We report observations of similar transitions at CRYRING, including an accompanying drop in Schottky-noise power. We also introduce a model of the ordered beam from which the Schottky-noise power can be calculated numerically. The good agreement between the model calculation and the experimental data is seen as evidence for a spatial ordering of the ions.

5.
Science ; 263(5148): 785-7, 1994 Feb 11.
Article in English | MEDLINE | ID: mdl-17770831

ABSTRACT

Knowledge of the abundance of H(3)(+) is needed in interstellar and planetary atmospheric chemistry. An important destruction mechanism of H(3)(+) is low-energy electron impact followed by dissociation, but estimates of the reaction rate span several orders of magnitude. As an attempt to resolve this uncertainty, the cross section for dissociative recombination of vibrationally cold H(3)(+) has been measured with an ion storage ring down to collision energies below 1 millielectron volt. A rate coefficient of 1.15 x 10(-7) cubic centimeters per second at 300 kelvin was deduced. The cross section scaled with collision energy according to E(-1.15), giving thee rate a temperature dependence of T(-0.65).

SELECTION OF CITATIONS
SEARCH DETAIL
...