Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 32(18): 4040-4047.e4, 2022 09 26.
Article in English | MEDLINE | ID: mdl-35917819

ABSTRACT

For centuries, humans have cultivated cannabis for the pharmacological properties that result from consuming its specialized metabolites, primarily cannabinoids and terpenoids. Today, cannabis is a multi-billion-dollar industry whose existence rests on the biological activity of tiny cell clusters, called glandular trichomes, found mainly on flowers. Cannabinoids are toxic to cannabis cells,1 and how the trichome cells can produce and secrete massive quantities of lipophilic metabolites is not known.1 To address this gap in knowledge, we investigated cannabis glandular trichomes using ultra-rapid cryofixation, quantitative electron microscopy, and immuno-gold labeling of cannabinoid pathway enzymes. We demonstrate that the metabolically active cells in cannabis form a "supercell," with extensive cytoplasmic bridges across the cell walls and a polar distribution of organelles adjacent to the apical surface where metabolites are secreted. The predicted metabolic role of the non-photosynthetic plastids is supported by unusual membrane arrays in the plastids and the localization of the start of the cannabinoid/terpene pathway in the stroma of the plastids. Abundant membrane contact sites connected plastid paracrystalline cores with the plastid envelope, plastid with endoplasmic reticulum (ER), and ER with plasma membrane. The final step of cannabinoid biosynthesis, catalyzed by tetrahydrocannabinolic acid synthase (THCAS), was localized in the cell-surface wall facing the extracellular storage cavity. We propose a new model of how the cannabis cells can support abundant metabolite production, with emphasis on the key role of membrane contact sites and extracellular THCA biosynthesis. This new model can inform synthetic biology approaches for cannabinoid production in yeast or cell cultures.


Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Cannabinoids/chemistry , Cannabis/chemistry , Humans , Terpenes/metabolism , Trichomes
2.
Plant J ; 101(1): 37-56, 2020 01.
Article in English | MEDLINE | ID: mdl-31469934

ABSTRACT

The cannabis leaf is iconic, but it is the flowers of cannabis that are consumed for the psychoactive and medicinal effects of their specialized metabolites. Cannabinoid metabolites, together with terpenes, are produced in glandular trichomes. Superficially, stalked and sessile trichomes in cannabis only differ in size and whether they have a stalk. The objectives of this study were: to define each trichome type using patterns of autofluorescence and secretory cell numbers, to test the hypothesis that stalked trichomes develop from sessile-like precursors, and to test whether metabolic specialization occurs in cannabis glandular trichomes. A two-photon microscopy technique using glandular trichome intrinsic autofluorescence was developed which demonstrated that stalked glandular trichomes possessed blue autofluorescence correlated with high cannabinoid levels. These stalked trichomes had 12-16 secretory disc cells and strongly monoterpene-dominant terpene profiles. In contrast, sessile trichomes on mature flowers and vegetative leaves possessed red-shifted autofluorescence, eight secretory disc cells and less monoterpene-dominant terpene profiles. Moreover, intrinsic autofluorescence patterns and disc cell numbers supported a developmental model where stalked trichomes develop from apparently sessile trichomes. Transcriptomes of isolated floral trichomes revealed strong expression of cannabinoid and terpene biosynthetic genes, as well as uncharacterized genes highly co-expressed with CBDA synthase. Identification and characterization of two previously unknown and highly expressed monoterpene synthases highlighted the metabolic specialization of stalked trichomes for monoterpene production. These unique properties and highly expressed genes of cannabis trichomes determine the medicinal, psychoactive and sensory properties of cannabis products.


Subject(s)
Cannabis/metabolism , Flowers/metabolism , Trichomes/genetics , Cannabis/genetics , Flowers/genetics , Microscopy, Fluorescence , Plant Leaves/genetics , Plant Leaves/metabolism , Terpenes/metabolism
3.
Planta ; 231(3): 549-58, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19946704

ABSTRACT

There have been few studies on quantifying carotenoid accumulation in carrots, and none have taken the comparative approach. The abundance and distribution of carotenes in carrot roots of three varieties, white, orange, and high carotene mass (HCM) were compared using light and transmission electron microscopy (TEM). Light microscopy has indicated that, in all three varieties, carotenes were most abundant in the secondary phloem and this area was selected for further TEM analysis. While carotenes were extracted during the fixation process for TEM, the high-pressure freezing technique we employed preserved the spaces (CS) left behind by the extracted carotene crystals. Chromoplasts from the HCM variety contained significantly (P < 0.05) more CS than chromoplasts from the orange variety. Chromoplasts from the white variety had few or no CS. There was no significant difference between the HCM and orange varieties in the number of chromoplasts per unit area, but the white variety had significantly (P < 0.05) fewer chromoplasts than the other two varieties. A large number of starch-filled amyloplasts was observed in secondary phloem of the white variety but these were not found in the other two varieties. The results from this comparative approach clearly define the subcellular localization of carotenoids in carrot roots and suggest that while the HCM genotype was selectively bred for increased carotene content, this selection did not lead to increased numbers of carotene-containing chromoplasts but rather greater accumulation of carotene per chromoplast. Furthermore, the results confirm that roots of the white carrot variety retain residual amounts of carotene.


Subject(s)
Carotenoids/metabolism , Daucus carota/metabolism , Phloem/metabolism , Plastids/ultrastructure , Daucus carota/ultrastructure , Genotype , Microscopy, Electron, Transmission , Phloem/ultrastructure , Plant Roots/metabolism
4.
Plant Physiol ; 147(4): 1750-60, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18550683

ABSTRACT

Secondary xylem (wood) formation in gymnosperms requires that the tracheid protoplasts first build an elaborate secondary cell wall from an array of polysaccharides and then reinforce it with lignin, an amorphous, three-dimensional product of the random radical coupling of monolignols. The objective of this study was to track the spatial distribution of monolignols during development as they move from symplasm to apoplasm. This was done by feeding [(3)H]phenylalanine ([(3)H]Phe) to dissected cambium/developing wood from lodgepole pine (Pinus contorta var latifolia) seedlings, allowing uptake and metabolism, then rapidly freezing the cells and performing autoradiography to detect the locations of the monolignols responsible for lignification. Parallel experiments showed that radioactivity was incorporated into polymeric lignin and a methanol-soluble pool that was characterized by high-performance liquid chromatography. [(3)H]Phe was incorporated into expected lignin precursors, such as coniferyl alcohol and p-coumaryl alcohol, as well as pinoresinol. Coniferin, the glucoside of coniferyl alcohol, was detected by high-performance liquid chromatography but was not radioactively labeled. With light microscopy, radiolabeled phenylpropanoids were detected in the rays as well as the tracheids, with the two cell types showing differential sensitivity to inhibitors of protein translation and phenylpropanoid metabolism. Secondary cell walls of developing tracheids were heavily labeled when incubated with [(3)H]Phe. Inside the cell, cytoplasm was most strongly labeled followed by Golgi and low-vacuole label. Inhibitor studies suggest that the Golgi signal could be attributed to protein, rather than phenylpropanoid, origins. These data, produced with the best microscopy tools that are available today, support a model in which unknown membrane transporters, rather than Golgi vesicles, export monolignols.


Subject(s)
Lignin/analysis , Pinus/chemistry , Wood/chemistry , Autoradiography , Cell Wall/chemistry , Chromatography, High Pressure Liquid , Cycloheximide/pharmacology , Golgi Apparatus/chemistry , Lignin/chemistry , Phenylalanine/analysis , Phenylalanine/metabolism , Pinus/growth & development , Pinus/ultrastructure , Protein Synthesis Inhibitors/pharmacology , Protoplasts/chemistry , Protoplasts/drug effects , Protoplasts/ultrastructure , Tritium , Wood/growth & development , Wood/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...