Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(4): 2936-2944, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38193856

ABSTRACT

Room temperature imidazolium-based ionic liquids (ILs) often present super-acidity, which can be characterized by the free energy of solvation of protons in ILs, ΔsolvG°(H+)IL. It can be derived from the consensus value of the free energy of solvation of protons in water if the free energy of transfer of protons from water to the ILs, ΔtG°(H+), is determined. However, the experimental determination of the free energy of transfer of protons relies on extra-thermodynamic hypotheses, as protons cannot be transferred from one solvent to another without a counterion. Here we propose to measure the Hammett acidity functions, which relies on the protonation equilibrium of specific pH-reporters, for the first time by Raman spectroscopy directly in acidic solution of 2,6-dichloro-4-nitroaniline in three 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ILs. We demonstrated that the ΔtG°(H+) obtained by Raman spectroscopy and UV-visible spectroscopy were identical in the same 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Also, when the butyl substituent is replaced by a longer alkyl chain such as an octyl chain, the acidity in the IL is lowered. The free energies of solvation are calculated in four ILs from Raman spectroscopy data recorded directly in the acidic solutions. These values confirmed that the protons are less solvated in ILs than in water, hence their acidity. Raman spectroscopy also enables determination of the solvation number of the proton in imidazolium-based bis(trifluoromethylsulfonyl)imide ILs. The benefits of implementing Raman spectroscopy to determine the Hammett acidity function in ILs using a non-colored pH-reporter and in colored media are also discussed.

2.
Analyst ; 149(2): 553-562, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38088863

ABSTRACT

Hyperspectral stimulated Raman scattering (SRS) microscopy is a powerful method for direct visualisation and compositional analysis of cellular lipid droplets. Here we report the application of spectral phasor analysis as a convenient method for the segmentation of lipid droplets using the hyperspectral SRS spectrum in the high wavenumber and fingerprint region of the spectrum. Spectral phasor analysis was shown to discriminate six fatty acids based on vibrational spectroscopic features in solution. The methodology was then applied to studying fatty acid metabolism and storage in a mammalian cancer cell model and during drug-induced steatosis in a hepatocellular carcinoma cell model. The accumulation of fatty acids into cellular lipid droplets was shown to vary as a function of the degree of unsaturation, whilst in a model of drug-induced steatosis, the detection of increased saturated fatty acid esters was observed. Taking advantage of the fingerprint and high wavenumber regions of the SRS spectrum has yielded a greater insight into lipid droplet composition in a cellular context. This approach will find application in the label-free profiling of intracellular lipids in complex disease models.


Subject(s)
Chemometrics , Lipid Droplets , Animals , Nonlinear Optical Microscopy , Fatty Acids , Microscopy/methods , Spectrum Analysis, Raman/methods , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...