Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Biomech Model Mechanobiol ; 22(6): 1829-1846, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37400622

ABSTRACT

In this work, we performed a computational image-based study of blood dynamics in the whole left heart, both in a healthy subject and in a patient with mitral valve regurgitation. We elaborated multi-series cine-MRI with the aim of reconstructing the geometry and the corresponding motion of left ventricle, left atrium, mitral and aortic valves, and aortic root of the subjects. This allowed us to prescribe such motion to computational blood dynamics simulations where, for the first time, the whole left heart motion of the subject is considered, allowing us to obtain reliable subject-specific information. The final aim is to investigate and compare between the subjects the occurrence of turbulence and the risk of hemolysis and of thrombi formation. In particular, we modeled blood with the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian framework, with a large eddy simulation model to describe the transition to turbulence and a resistive method to manage the valve dynamics, and we used a finite element discretization implemented in an in-house code for the numerical solution.


Subject(s)
Mitral Valve Insufficiency , Humans , Mitral Valve Insufficiency/diagnostic imaging , Heart Ventricles , Aortic Valve/diagnostic imaging , Computer Simulation , Magnetic Resonance Imaging , Models, Cardiovascular
3.
Int J Numer Method Biomed Eng ; 39(6): e3704, 2023 06.
Article in English | MEDLINE | ID: mdl-36971047

ABSTRACT

Transcatheter aortic valve implantation (TAVI) is a minimally invasive intervention for the treatment of severe aortic valve stenosis. The main cause of failure is the structural deterioration of the implanted prosthetic leaflets, possibly inducing a valvular re-stenosis 5-10 years after the implantation. Based solely on pre-implantation data, the aim of this work is to identify fluid-dynamics and structural indices that may predict the possible valvular deterioration, in order to assist the clinicians in the decision-making phase and in the intervention design. Patient-specific, pre-implantation geometries of the aortic root, the ascending aorta, and the native valvular calcifications were reconstructed from computed tomography images. The stent of the prosthesis was modeled as a hollow cylinder and virtually implanted in the reconstructed domain. The fluid-structure interaction between the blood flow, the stent, and the residual native tissue surrounding the prosthesis was simulated by a computational solver with suitable boundary conditions. Hemodynamical and structural indicators were analyzed for five different patients that underwent TAVI - three with prosthetic valve degeneration and two without degeneration - and the comparison of the results showed a correlation between the leaflets' structural degeneration and the wall shear stress distribution on the proximal aortic wall. This investigation represents a first step towards computational predictive analysis of TAVI degeneration, based on pre-implantation data and without requiring additional peri-operative or follow-up information. Indeed, being able to identify patients more likely to experience degeneration after TAVI may help to schedule a patient-specific timing of follow-up.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/methods , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Tomography, X-Ray Computed , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...