Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(12): e2304519, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38227373

ABSTRACT

The regulation of gene expression by light enables the versatile, spatiotemporal manipulation of biological function in bacterial and mammalian cells. Optoribogenetics extends this principle by molecular RNA devices acting on the RNA level whose functions are controlled by the photoinduced interaction of a light-oxygen-voltage photoreceptor with cognate RNA aptamers. Here light-responsive ribozymes, denoted optozymes, which undergo light-dependent self-cleavage and thereby control gene expression are described. This approach transcends existing aptamer-ribozyme chimera strategies that predominantly rely on aptamers binding to small molecules. The optozyme method thus stands to enable the graded, non-invasive, and spatiotemporally resolved control of gene expression. Optozymes are found efficient in bacteria and mammalian cells and usher in hitherto inaccessible optoribogenetic modalities with broad applicability in synthetic and systems biology.


Subject(s)
RNA, Catalytic , RNA , Animals , Nucleotide Motifs , RNA/genetics , RNA, Catalytic/chemistry , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , Bacteria/metabolism , Gene Expression , Mammals/metabolism
2.
Nat Commun ; 13(1): 2618, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35552382

ABSTRACT

In nature as in biotechnology, light-oxygen-voltage photoreceptors perceive blue light to elicit spatiotemporally defined cellular responses. Photon absorption drives thioadduct formation between a conserved cysteine and the flavin chromophore. An equally conserved, proximal glutamine processes the resultant flavin protonation into downstream hydrogen-bond rearrangements. Here, we report that this glutamine, long deemed essential, is generally dispensable. In its absence, several light-oxygen-voltage receptors invariably retained productive, if often attenuated, signaling responses. Structures of a light-oxygen-voltage paradigm at around 1 Å resolution revealed highly similar light-induced conformational changes, irrespective of whether the glutamine is present. Naturally occurring, glutamine-deficient light-oxygen-voltage receptors likely serve as bona fide photoreceptors, as we showcase for a diguanylate cyclase. We propose that without the glutamine, water molecules transiently approach the chromophore and thus propagate flavin protonation downstream. Signaling without glutamine appears intrinsic to light-oxygen-voltage receptors, which pertains to biotechnological applications and suggests evolutionary descendance from redox-active flavoproteins.


Subject(s)
Glutamine , Oxygen , Flavins/chemistry , Flavoproteins/chemistry , Glutamine/chemistry , Light , Signal Transduction
3.
Angew Chem Int Ed Engl ; 59(50): 22414-22418, 2020 12 07.
Article in English | MEDLINE | ID: mdl-32865316

ABSTRACT

The investigation and manipulation of cellular processes with subcellular resolution requires non-invasive tools with spatiotemporal precision and reversibility. Building on the interaction of the photoreceptor PAL with an RNA aptamer, we describe a variation of the CRISPR/dCAS9 system for light-controlled activation of gene expression. This platform significantly reduces the coding space required for genetic manipulation and provides a strong on-switch with almost no residual activity in the dark. It adds to the current set of modular building blocks for synthetic biological circuit design and is broadly applicable.


Subject(s)
Aptamers, Nucleotide/genetics , CRISPR-Cas Systems/genetics , Light , Gene Expression , Humans , Transcriptional Activation/genetics
4.
Nat Chem Biol ; 15(11): 1085-1092, 2019 11.
Article in English | MEDLINE | ID: mdl-31451761

ABSTRACT

Sensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units. The light-activated PAL-RNA interaction can be harnessed to regulate gene expression at the RNA level as a function of light in both bacteria and mammalian cells. The present results elucidate a new signal-transduction paradigm in LOV receptors and conjoin RNA biology with optogenetic regulation, thereby paving the way toward hitherto inaccessible optoribogenetic modalities.


Subject(s)
Light , Protein Biosynthesis , RNA/metabolism , Bacterial Proteins/metabolism , Protein Binding , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...