Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Article in English | MEDLINE | ID: mdl-26805860

ABSTRACT

Most casinos owned by sovereign American Indian nations allow smoking, even in U.S. states such as California where state laws restrict workplace smoking. Collaborations between casinos and public health workers are needed to promote smoke-free policies that protect workers and patrons from secondhand tobacco smoke (SHS) exposure and risks. Over seven years, a coalition of public health professionals provided technical assistance to the Redding Rancheria tribe in Redding, California in establishing a smoke-free policy at the Win-River Resort and Casino. The coalition provided information to the casino general manager that included site-specific measurement of employee and visitor PM2.5 personal exposure, area concentrations of airborne nicotine and PM2.5, visitor urinary cotinine, and patron and staff opinions (surveys, focus groups, and a Town Hall meeting). The manager communicated results to tribal membership, including evidence of high SHS exposures and support for a smoke-free policy. Subsequently, in concert with hotel expansion, the Redding Rancheria Tribal Council voted to accept a 100% restriction of smoking inside the casino, whereupon PM2.5 exposure in main smoking areas dropped by 98%. A 70% partial-smoke-free policy was instituted ~1 year later in the face of revenue loss. The success of the collaboration in promoting a smoke-free policy, and the key element of air quality feedback, which appeared to be a central driver, may provide a model for similar efforts.


Subject(s)
Air Pollution, Indoor/analysis , Health Resorts/legislation & jurisprudence , Nicotine/analysis , Public Health/legislation & jurisprudence , Smoke-Free Policy/legislation & jurisprudence , Tobacco Smoke Pollution/legislation & jurisprudence , California , Cooperative Behavior , Environmental Monitoring , Humans , Indians, North American
2.
Environ Sci Process Impacts ; 17(11): 1959-66, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26487426

ABSTRACT

Real-time particle monitors are essential for accurately estimating exposure to fine particles indoors. However, many such monitors tend to be prohibitively expensive for some applications, such as a tenant or homeowner curious about the quality of the air in their home. A lower cost version (the Dylos Air Quality Monitor) has recently been introduced, but it requires appropriate calibration to reflect the mass concentration units required for exposure assessment. We conducted a total of 64 experiments with a suite of instruments including a Dylos DC1100, another real-time laser photometer (TSI SidePak™ Model AM-510 Personal Aerosol Monitor), and a gravimetric sampling apparatus to estimate Dylos calibration factors for emissions from 17 different common indoor sources including cigarettes, incense, fried bacon, chicken, and hamburger. Comparison of minute-by-minute data from the Dylos with the gravimetrically calibrated SidePak yielded relationships that enable the conversion of the raw Dylos particle counts less than 2.5 µm (in #/0.01 ft(3)) to estimated PM2.5 mass concentration (e.g. µg m(-3)). The relationship between the exponentially-decaying Dylos particle counts and PM2.5 mass concentration can be described by a theoretically-derived power law with source-specific empirical parameters. A linear relationship (calibration factor) is applicable to fresh or quickly decaying emissions (i.e., before the aerosol has aged and differential decay rates introduce curvature into the relationship). The empirical parameters for the power-law relationships vary greatly both between and within source types, although linear factors appear to have lower uncertainty. The Dylos Air Quality Monitor is likely most useful for providing instantaneous feedback and context on mass particle levels in home and work situations for field-survey or personal awareness applications.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Particulate Matter/analysis , Aerosols/analysis , Air Pollution, Indoor/statistics & numerical data , Calibration , Environmental Monitoring/standards , Particle Size , Particulate Matter/standards
3.
Environ Sci Process Impacts ; 15(8): 1511-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23784066

ABSTRACT

Indoor sources can greatly contribute to personal exposure to particulate matter less than 2.5 µm in diameter (PM2.5). To accurately assess PM2.5 mass emission factors and concentrations, real-time particle monitors must be calibrated for individual sources. Sixty-six experiments were conducted with a common, real-time laser photometer (TSI SidePak™ Model AM510 Personal Aerosol Monitor) and a filter-based PM2.5 gravimetric sampler to quantify the monitor calibration factors (CFs), and to estimate emission factors for common indoor sources including cigarettes, incense, cooking, candles, and fireplaces. Calibration factors for these indoor sources were all significantly less than the factory-set CF of 1.0, ranging from 0.32 (cigarette smoke) to 0.70 (hamburger). Stick incense had a CF of 0.35, while fireplace emissions ranged from 0.44-0.47. Cooking source CFs ranged from 0.41 (fried bacon) to 0.65-0.70 (fried pork chops, salmon, and hamburger). The CFs of combined sources (e.g., cooking and cigarette emissions mixed) were linear combinations of the CFs of the component sources. The highest PM2.5 emission factors per time period were from burned foods and fireplaces (15-16 mg min(-1)), and the lowest from cooking foods such as pizza and ground beef (0.1-0.2 mg min(-1)).


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/standards , Particulate Matter/analysis , Air Pollutants/standards , Calibration/standards , Cooking , Fires , Particle Size , Particulate Matter/standards
4.
Nicotine Tob Res ; 13(5): 344-52, 2011 May.
Article in English | MEDLINE | ID: mdl-21430065

ABSTRACT

INTRODUCTION: Smoke-free workplace legislation often exempts certain venues. Do smoking (exempted) and nonsmoking (nonexempted) catering premises' workers in Hong Kong report different perceptions of risk from and reactions to nearby smoking as well as actual exposure to secondhand smoke (SHS)? METHODS: In a cross-sectional survey of 204 nonsmoking catering workers, those from 67 premises where smoking is allowed were compared with workers from 36 nonsmoking premises in Hong Kong on measures of perceptions of risk and behavioral responses to self-reported SHS exposure, plus independent exposure assessment using urinary cotinine. RESULTS: Self-reported workplace SHS exposure prevalence was 57% (95% CI = 49%-65%) in premises prohibiting and 100% (95% CI = 92%-100%) in premises permitting smoking (p < .001). Workers in smoking-permitted premises perceived workplace air quality as poorer (odds ratio [OR] = 9.3, 95% CI = 4.2-20.9) with higher associated risks (OR = 3.7, 95% CI = 1.6-8.6) than workers in smoking-prohibited premises. Workers in smoking-prohibited premises were more bothered by (OR = 0.2, 95% CI = 0.1-0.5) and took more protective action to avoid SHS (OR = 0.2, 95% CI = 0.1-0.4) than workers in smoking-permitted premises. Nonwork exposure was negatively associated with being always bothered by nearby smoking (OR = 0.3, 95% CI = 0.1-0.9), discouraging nearby smoking (OR = 0.5, 95% CI = 0.2-1.1), and discouraging home smoking (OR = 0.4, 95% CI = 0.2-0.9). Urinary cotinine levels were inversely related to workers' avoidance behavior but positively related to their perceived exposure-related risks. CONCLUSIONS: Different workplace smoking restrictions predicted actual SHS exposure, exposure-related risk perception, and protective behaviors. Workers from smoking-permitted premises perceived greater SHS exposure-related risks but were more tolerant of these than workers in smoking-prohibited premises. This tolerance might indirectly increase both work and nonwork exposures.


Subject(s)
Air Pollutants, Occupational/analysis , Perception , Risk Assessment , Tobacco Smoke Pollution/adverse effects , Adolescent , Adult , Air Pollutants, Occupational/poisoning , Female , Food Services/legislation & jurisprudence , Food Services/statistics & numerical data , Hong Kong , Humans , Male , Middle Aged , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Restaurants/legislation & jurisprudence , Restaurants/statistics & numerical data , Smoking/legislation & jurisprudence , Tobacco Smoke Pollution/analysis , Young Adult
5.
Environ Res ; 111(4): 473-84, 2011 May.
Article in English | MEDLINE | ID: mdl-21440253

ABSTRACT

Smoking bans often exempt casinos, exposing occupants to fine particles (PM(2.5)) from secondhand smoke. We quantified the relative contributions to PM(2.5) from both secondhand smoke and infiltrating outdoor sources in US casinos. We measured real-time PM(2.5), particulate polycyclic aromatic hydrocarbons (PPAH), and carbon dioxide (CO(2)) (as an index of ventilation rate) inside and outside 8 casinos in Reno, Nevada. We combined these data with data from previous studies, yielding a total of 66 US casinos with smoking in California, Delaware, Nevada, New Jersey, and Pennsylvania, developing PM(2.5) frequency distributions, with 3 nonsmoking casinos for comparison. Geometric means for PM(2.5) were 53.8 µg/m(3) (range 18.5-205 µg/m(3)) inside smoking casinos, 4.3 µg/m(3) (range 0.26-29.7 µg/m(3)) outside those casinos, and 3.1 µg/m(3) (range 0.6-9 µg/m(3)) inside 3 nonsmoking casinos. In a subset of 21 Reno and Las Vegas smoking casinos, PM(2.5) in gaming areas averaged 45.2 µg/m(3) (95% CI, 37.7-52.7 µg/m(3)); adjacent nonsmoking casino restaurants averaged 27.2 µg/m(3) (95% CI, 17.5-36.9 µg/m(3)), while PM(2.5) outside the casinos averaged 3.9 µg/m(3) (95% CI, 2.5-5.3 µg/m(3)). For a subset of 10 Nevada and Pennsylvania smoking casinos, incremental (indoor-outdoor) PM(2.5) was correlated with incremental PPAH (R(2)=0.79), with ventilation rate-adjusted smoker density (R(2)=0.73), and with smoker density (R(2)=0.60), but not with ventilation rates (R(2)=0.15). PPAH levels in 8 smoking casinos in 3 states averaged 4 times outdoors. The nonsmoking casinos' PM(2.5) (n=3) did not differ from outdoor levels, nor did their PPAH (n=2). Incremental PM(2.5) from secondhand smoke in approximately half the smoking casinos exceeded a level known to produce cardiovascular morbidity in nonsmokers after less than 2h of exposure, posing acute health risks to patrons and workers. Casino ventilation and air cleaning practices failed to control secondhand smoke PM(2.5). Drifting PM(2.5) from secondhand smoke contaminated unseparated nonsmoking areas. Smoke-free casinos reduced PM(2.5) to the same low levels found outdoors.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/statistics & numerical data , Inhalation Exposure/statistics & numerical data , Particulate Matter/analysis , Tobacco Smoke Pollution/statistics & numerical data , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Risk Assessment , United States , Ventilation/statistics & numerical data
6.
J Expo Sci Environ Epidemiol ; 21(1): 31-41, 2011.
Article in English | MEDLINE | ID: mdl-20160761

ABSTRACT

Despite California's 1994 statewide smoking ban, exposure to secondhand smoke (SHS) continues in California's Indian casinos. Few data are available on exposure to airborne fine particles (PM2.5) in casinos, especially on a statewide basis. We sought to measure PM2.5 concentrations in Indian casinos widely distributed across California, exploring differences due to casino size, separation of smoking and non-smoking areas, and area smoker density. A selection of 36 out of the 58 Indian casinos throughout California were each visited for 1-3 h on weekend or holiday evenings, using two or more concealed monitors to measure PM2.5 concentrations every 10 s. For each casino, the physical dimensions and the number of patrons and smokers were estimated. As a preliminary assessment of representativeness, we also measured eight casinos in Reno, NV. The average PM2.5 concentration for the smoking slot machine areas (63 µg/m³) was nine times as high as outdoors (7 µg/m³), whereas casino non-smoking restaurants (29 µg/m³) were four times as high. Levels in non-smoking slot machine areas varied: complete physical separation reduced concentrations almost to outdoor levels, but two other separation types had mean levels that were 13 and 29 µg/m³, respectively, higher than outdoors. Elevated PM2.5 concentrations in casinos can be attributed primarily to SHS. Average PM2.5 concentrations during 0.5-1 h visits to smoking areas exceeded 35 µg/m³ for 90% of the casino visits.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Indians, North American/psychology , Particulate Matter/analysis , Smoking/ethnology , Tobacco Smoke Pollution/analysis , Air Pollutants/chemistry , California , Data Collection , Environmental Monitoring , Gambling , Humans , Particle Size , Particulate Matter/chemistry , Smoking/legislation & jurisprudence
7.
Am J Public Health ; 99(8): 1478-85, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19542036

ABSTRACT

OBJECTIVES: I assessed air pollution, ventilation, and nonsmokers' risk from secondhand smoke (SHS) in Pennsylvania casinos exempted from a statewide smoke-free workplace law. METHODS: I measured respirable suspended particles (RSPs), particulate polycyclic aromatic hydrocarbons (PPAHs), and carbon dioxide inside and outside casinos; measured changes in patrons' urine cotinine after casino visits; and assessed SHS impact on workers and patrons, using exposure-response models, air quality standards, and odor and irritation thresholds. RESULTS: PPAH and RSP concentrations in casinos were, on average, 4 and 6 times, respectively, that of outdoor levels despite generous ventilation and low smoking prevalence. SHS infiltrated into nonsmoking gaming areas. Patrons' urine cotinine increased 1.9 ng/mL on average after about 4-hour visits. CONCLUSIONS: SHS-induced heart disease and lung cancer will cause an estimated 6 Pennsylvania casino workers' deaths annually per 10,000 at risk, 5-fold the death rate from Pennsylvania mining disasters. Casinos should not be exempt from smoke-free workplace laws.


Subject(s)
Air Pollution, Indoor/statistics & numerical data , Occupational Diseases/epidemiology , Tobacco Smoke Pollution/statistics & numerical data , Workplace/statistics & numerical data , Adult , Cotinine/urine , Humans , Models, Statistical , Occupational Diseases/mortality , Pennsylvania/epidemiology , Polycyclic Aromatic Hydrocarbons/urine , Prevalence , Ventilation/statistics & numerical data
8.
BMC Public Health ; 6: 266, 2006 Oct 27.
Article in English | MEDLINE | ID: mdl-17069654

ABSTRACT

BACKGROUND: We quantified the air quality benefits of a smoke-free workplace law in Boston Massachusetts, U.S.A., by measuring air pollution from secondhand smoke (SHS) in 7 pubs before and after the law, comparing actual ventilation practices to engineering society (ASHRAE) recommendations, and assessing SHS levels using health and comfort indices. METHODS: We performed real-time measurements of respirable particle (RSP) air pollution and particulate polycyclic aromatic hydrocarbons (PPAH), in 7 pubs and outdoors in a model-based design yielding air exchange rates for RSP removal. We also assessed ventilation rates from carbon dioxide concentrations. We compared RSP air pollution to the federal Air Quality Index (AQI) and the National Ambient Air Quality Standard (NAAQS) to assess health risks, and assessed odor and irritation levels using published SHS-RSP thresholds. RESULTS: Pre-smoking-ban RSP levels in 6 pubs (one pub with a non-SHS air quality problem was excluded) averaged 179 microg/m3, 23 times higher than post-ban levels, which averaged 7.7 microg/m3, exceeding the NAAQS for fine particle pollution (PM2.5) by nearly 4-fold. Pre-smoking ban levels of fine particle air pollution in all 7 of the pubs were in the Unhealthy to Hazardous range of the AQI. In the same 6 pubs, pre-ban indoor carcinogenic PPAH averaged 61.7 ng/m3, nearly 10 times higher than post-ban levels of 6.32 ng/m3. Post-ban particulate air pollution levels were in the Good AQI range, except for 1 venue with a defective gas-fired deep-fat fryer, while post-ban carcinogen levels in all 7 pubs were lower than outdoors. CONCLUSION: During smoking, although pub ventilation rates per occupant were within ASHRAE design parameters for the control of carbon dioxide levels for the number of occupants present, they failed to control SHS carcinogens or RSP. Nonsmokers' SHS odor and irritation sensory thresholds were massively exceeded. Post-ban air pollution measurements showed 90% to 95% reductions in PPAH and RSP respectively, differing little from outdoor concentrations. Ventilation failed to control SHS, leading to increased risk of the diseases of air pollution for nonsmoking workers and patrons. Boston's smoking ban eliminated this risk.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Occupational Exposure/prevention & control , Public Policy , Restaurants/legislation & jurisprudence , Smoking Prevention , Tobacco Smoke Pollution/analysis , Ventilation/standards , Air Movements , Air Pollutants, Occupational/analysis , Air Pollution, Indoor/legislation & jurisprudence , Air Pollution, Indoor/prevention & control , Boston , Guidelines as Topic , Humans , Occupational Exposure/legislation & jurisprudence , Polycyclic Aromatic Hydrocarbons/analysis , Program Evaluation , Risk Assessment , Smoking/legislation & jurisprudence , Tobacco Smoke Pollution/legislation & jurisprudence , Tobacco Smoke Pollution/prevention & control
9.
Toxicol Sci ; 90(2): 539-48, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16428261

ABSTRACT

Workers in the catering industry are at greater risk of exposure to secondhand smoke (SHS) when smoke-free workplace policies are not in force. We determined the exposure of catering workers to SHS in Hong Kong and their risk of death from heart disease and lung cancer. Nonsmoking catering workers were provided with screening at their workplaces and at a central clinic. Participants reported workplace, home, and leisure time exposure to SHS. Urinary cotinine was estimated by enzyme immunoassay. Catering facilities were classified into three types: nonsmoking, partially restricted smoking (with nonsmoking areas), and unrestricted smoking. Mean urinary cotinine levels ranged from 3.3 ng/ml in a control group of 16 university staff through 6.4 ng/ml (nonsmoking), 6.1 ng/ml (partially restricted), and 15.9 ng/ml (unrestricted smoking) in 104 workers who had no exposures outside of work. Workers in nonsmoking facilities had exposures to other smoking staff. We modeled workers' mortality risks using average cotinine levels, estimates of workplace respirable particulates, risk data for cancer and heart disease from cohort studies, and national (US) and regional (Hong Kong) mortality for heart disease and lung cancer. We estimated that deaths in the Hong Kong catering workforce of 200,000 occur at the rate of 150 per year for a 40-year working-lifetime exposure to SHS. When compared with the current outdoor air quality standards for particulates in Hong Kong, 30% of workers exceeded the 24-h and 98% exceeded the annual air quality objectives due to workplace SHS exposures.


Subject(s)
Heart Diseases/etiology , Lung Neoplasms/etiology , Occupational Diseases/etiology , Restaurants , Tobacco Smoke Pollution/adverse effects , Air Pollutants, Occupational/toxicity , Air Pollution, Indoor/adverse effects , Biomarkers/urine , Carbon Monoxide/metabolism , Cotinine/urine , Environmental Monitoring , Epidemiological Monitoring , Female , Heart Diseases/epidemiology , Hong Kong/epidemiology , Humans , Lung Neoplasms/epidemiology , Male , Models, Biological , Occupational Diseases/epidemiology , Occupational Exposure/adverse effects , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...