Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 17(11): 3077-3088, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27974218

ABSTRACT

The NLRP3 inflammasome plays a critical role in host defense by facilitating caspase I activation and maturation of IL-1ß and IL-18, whereas dysregulation of inflammasome activity results in autoinflammatory disease. Factors regulating human NLRP3 activity that contribute to the phenotypic heterogeneity of NLRP3-related diseases have largely been inferred from the study of Nlrp3 mutant mice. By generating a mouse line in which the NLRP3 locus is humanized by syntenic replacement, we show the functioning of the human NLRP3 proteins in vivo, demonstrating the ability of the human inflammasome to orchestrate immune reactions in response to innate stimuli. Humanized mice expressing disease-associated mutations develop normally but display acute sensitivity to endotoxin and develop progressive and debilitating arthritis characterized by granulocytic infiltrates, elevated cytokines, erosion of bones, and osteoporosis. This NLRP3-dependent arthritis model provides a platform for testing therapeutic reagents targeting the human inflammasome.


Subject(s)
Joint Diseases/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Osteoporosis/genetics , Animals , Disease Models, Animal , Humans , Inflammasomes/genetics , Joint Diseases/pathology , Mice , Mutation , Osteoporosis/pathology
2.
Drug Metab Dispos ; 42(6): 1074-83, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24658454

ABSTRACT

Glutathione S-transferases (GSTs) form a superfamily defined by their ability to catalyze the conjugation of glutathione with electrophilic substrates. These enzymes are proposed to play a critical role in protection of cellular components from damage mediated by reactive metabolites. Twenty-two cytosolic GSTs, grouped into seven families, are recognized in mice. This complexity hinders the assignment of function to a subset or family of these genes. We report generation of a mouse line in which the locus encoding three GST gene families is deleted. This includes the four Gstt genes spanning 65 kb on chromosome 10 and the seven Gstm genes found on a 150 kb segment of DNA chromosome 3. In addition, we delete two Gstp genes on chromosome 19 as well as a third related gene located 15 kb telomeric to Gstp1 and Gstp2, which we identify as a potential new member of this gene family. We show that, despite the loss of up to 75% of total GST activity in some tissues from these animals, the mice are healthy and fertile, with normal life expectancy. The normal development and health of these animals make them an appropriate model for defining the role of these families in redox homeostasis and metabolism of drugs and environmental pollutants.


Subject(s)
Genetic Loci/genetics , Glutathione S-Transferase pi/genetics , Glutathione Transferase/genetics , Amino Acid Sequence , Animals , Female , Glutathione S-Transferase pi/deficiency , Glutathione Transferase/deficiency , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...