Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 348(6236): 783-5, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25977548

ABSTRACT

Phosphorus in the +5 oxidation state (i.e., phosphate) is the most abundant form of phosphorus in the global ocean. An enigmatic pool of dissolved phosphonate molecules, with phosphorus in the +3 oxidation state, is also ubiquitous; however, cycling of phosphorus between oxidation states has remained poorly constrained. Using simple incubation and chromatography approaches, we measured the rate of the chemical reduction of phosphate to P(III) compounds in the western tropical North Atlantic Ocean. Colonial nitrogen-fixing cyanobacteria in surface waters played a critical role in phosphate reduction, but other classes of plankton, including potentially deep-water archaea, were also involved. These data are consistent with marine geochemical evidence and microbial genomic information, which together suggest the existence of a vast oceanic phosphorus redox cycle.


Subject(s)
Cyanobacteria/metabolism , Nitrogen Fixation , Phosphates/metabolism , Phosphorus/metabolism , Plankton/metabolism , Seawater/microbiology , Oceans and Seas , Oxidation-Reduction
2.
Appl Environ Microbiol ; 60(3): 840-6, 1994 Mar.
Article in English | MEDLINE | ID: mdl-8161177

ABSTRACT

The extracellular enzymatic activity of a mixed culture of anaerobic marine bacteria enriched on pullulan [alpha(1,6)-linked maltotriose units] was directly assessed with a combination of gel permeation chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR). Hydrolysis products of pullulan were separated by GPC into three fractions with molecular weights of > or = 10,000, approximately 5,000, and < or = 1,200. NMR spectra of these fractions demonstrated that pullulan was rapidly and specifically hydrolyzed at alpha(1,6) linkages by pullulanase enzymes, most likely type II pullulanase. Although isolated pullulanase enzymes have been shown to hydrolyze pullulan completely to maltotriose (S. H. Brown, H. R. Costantino, and R. M. Kelly, Appl. Environ. Microbiol. 56:1985-1991, 1990; M. Klingeberg, H. Hippe, and G. Antranikian, FEMS Microbiol. Lett. 69:145-152, 1990; R. Koch, P. Zablowski, A. Spreinat, and G. Antranikian, FEMS Microbiol. Lett. 71:21-26, 1990), the smallest carbohydrate detected in the bacterial cultures consisted of two maltotriose units linked through one alpha(1,6) linkage. Either the final hydrolysis step was closely linked to substrate uptake, or specialized porins similar to maltoporin might permit direct transport of large oligosaccharides into the bacterial cell. This is the first report of pullulanase activity among mesophilic marine bacteria. The combination of GPC and NMR could easily be used to assess other types of extracellular enzyme activity in bacterial cultures.


Subject(s)
Bacteria, Anaerobic/enzymology , Glucans/metabolism , Glycoside Hydrolases/metabolism , Seawater , Water Microbiology , Chromatography, Gel , Culture Media/chemistry , Hydrolysis , Magnetic Resonance Spectroscopy , Time Factors
3.
Geochim Cosmochim Acta ; 56: 1413-9, 1992.
Article in English | MEDLINE | ID: mdl-11537204

ABSTRACT

The delta 13C of suspended particulate organic matter (SPOM) in surface waters increased from -22.9 to -18.1% during April 25-May 31, 1989 at the JGOFS North Atlantic Bloom Experiment Site (NABE Site; 47 degrees N, 20 degrees W). During the same period, nearly parallel increases in sinking POM delta 13C were also found, although these values were usually lower than those of the corresponding SPOM. Consistent with the hypothesis that plankton delta 13C and [CO2 (aq)] are inversely related, the increases in both sinking and suspended POM delta 13C were highly negatively correlated with mixed-layer [CO2(aq)] that generally decreased from 13.2-10.1 micromoles/kg during the five weeks. The change in SPOM delta 13C per change in [CO2(aq)], however, appears to be somewhat greater than that expected from previous, though less direct, ocean and laboratory evidence. By adapting a model of plant delta 13C by FARQUHAR et al. (1982), it is shown that under a constant phytoplankton demand for CO2 an inverse, nonlinear SPOM delta 13C response to ambient [CO2(aq)] is expected. Such trends are unlike the negative linear relationships indicated by data from the NABE Site and or from Southern Hemisphere waters. Such differences between predicted and observed SPOM delta 13C vs. [CO2(aq)] trends and among observed relationships can be reconciled, however, if biological CO2 demand is allowed to vary. This has significant implications for the use of the delta 13C of plankton (or their organic subfractions or sedimentary remains) as a proxy for past or present ocean CO2 concentrations and biological productivity.


Subject(s)
Carbon Dioxide/analysis , Carbon/analysis , Phytoplankton/metabolism , Seawater/chemistry , Atlantic Ocean , Carbon/metabolism , Carbon Dioxide/metabolism , Carbon Isotopes , Ecosystem , Geological Phenomena , Geology , Models, Chemical , Photosynthesis , Phytoplankton/physiology
4.
Nature ; 342(6245): 69-72, 1989 Nov 02.
Article in English | MEDLINE | ID: mdl-11536615

ABSTRACT

The contribution of anoxygenic photosynthesis to carbon cycling in the Black Sea, the world's largest body of anoxic marine water, has been vigorously investigated and debated for over four decades. Penetration of light into the sulphide-containing deep water may result in a zone of anaerobic primary production by photosynthetic bacteria. We report here the results of analyses of photosynthetic pigments in samples of suspended particulate matter collected from two stations in the western basin of the Black Sea. Our data demonstrate high concentrations of a bacterio-chlorophyll at the chemocline, and thus the potential for anoxygenic photosynthesis as a component of primary production in the carbon cycle of the Black Sea. More than 95% of the pigments in the bacteriochlorophyll-maximum are accounted for by a series of aromatic carotenoids and bacteriochlorophylls-e, including a previously unreported geranyl ester of 4-i-butyl bacteriochlorophyll-e. The distribution of pigments is characteristic of the obligate phototrophs Chlorobium phaeobacteroides and C. phaeovibriodes. Total depth-integrated bacteriochlorophyll at one station exceeded total chlorophyll-a in the overlying oxygenated portion of the euphotic zone. We suggest that anoxygenic photosynthesis is a relatively recent phenomenon in the Black Sea initiated by shallowing of the chemocline over the past decade and development of an anoxic layer devoid of O2 and H2S.


Subject(s)
Bacteriochlorophylls/analysis , Carbon/chemistry , Chlorobi/metabolism , Photosynthesis , Seawater/chemistry , Anaerobiosis , Bacteriochlorophylls/isolation & purification , Bacteriochlorophylls/metabolism , Hydrogen Sulfide/analysis , Oceans and Seas , Oxygen/analysis , Phytoplankton/metabolism , Seawater/analysis , Turkey , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...