Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37514478

ABSTRACT

This article presents woven carbon-fiber-reinforced polymer (CFRP) tubular mesh used as a reinforcement on the inner surface of hollow beams made of high-performance concrete (HPC). The tubular mesh was designed to serve as both the tensile and shear reinforcement of hollow beams intended for the construction of small self-supporting structures that could be assembled without mechanization. The reinforcement was prepared with a tri-axial weaving machine from carbon filament yarn and was homogenized using epoxy resin. The interaction of the composite reinforcement with the cementitious matrix was investigated, and the surface of the reinforcement was modified using silica sand and polyvinyl alcohol (PVA) fibers to improve cohesion. The sand coating enhanced bond strength, resulting in the significantly higher flexural strength of the hollow beam of 128%. The PVA fibers had a lower positive effect of 64% on the flexural strength but improved the ductility of the beam. Individual beams were connected by gluing steel parts directly inside the hollow core of the HPC beam. This procedure provides good interaction between the CFRP reinforcement and the glued steel insert and allows for the fast and simple assembly of structures. The weaving of additional layers of the CFRP reinforcement around HPC beams was also explored. A small structure made of the hollow HPC beams with inner composite reinforcement was constructed to demonstrate the possibilities of the presented technology.

2.
Polymers (Basel) ; 15(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679254

ABSTRACT

Textile-reinforced concrete is becoming more and more popular. The material enables the realization of very thin structures and shells, often with organic shapes. However, a problem with this reinforcement occurs when the structure is bent (contains a corner), and the flexural stiffness around this bent area is required. This article presents the design, solution, and load-bearing capacity of an L-shaped rigid frame made of textile-reinforced concrete. Basic material parameters of concrete matrix and carbon textile reinforcement were supplemented by a four-point bending test to calibrate fracture energy Gf, critical compressive displacement Wd, solver type, and other parameters of a numerical model created by Atena Engineering in specialized non-linear structural analysis software for reinforced concrete structures. The calibrated numerical model was used to evaluate different variants of carbon textile reinforcement of the L-shaped frame. The carbon textile reinforcement was homogenized using epoxy resin to ensure the interaction of all fibers, and its surface was modified with fine-grained silica sand to increase the cohesion with the concrete matrix. Specimens were produced based on the most effective variant of the L-shaped frame reinforcement to be experimentally tested. Thanks to the original shaping and anchoring of the reinforcement in the corner area, the frame with composite textile reinforcement is rigid and can transmit the bending stresses in both positive and negative directions. The results of the mechanical loading test on small experimental specimens correspond well to the results of numerical modeling using Atena Engineering software.

3.
Polymers (Basel) ; 14(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683846

ABSTRACT

Textile-reinforced concrete (TRC) is a new composite material comprising high-performance concrete and textile reinforcement from textile yarns with a matrix, usually consisting of epoxy resins (ER). The most significant advantage of ER is the homogenization of all filaments in the yarn and full utilization of its tensile potential. Nevertheless, ER matrix is a critical part of TRC design from the perspective of the fire resistance due to its relatively low resistance at temperatures of approximately 120 ∘C. This work expands the previously performed mechanical tests at normal temperatures with cement suspension (CS) as a non-combustible material for the yarn matrix. Here, the mechanical properties of CS matrix at elevated temperatures were verified. It was found that the addition of polypropylene fibers into HPC negatively affected the mechanical results of CS matrix specimens. Simultaneously, thermal insulation effect of the covering layers with different thicknesses did not significantly influence the residual bending strength of specimens with CS matrix and achieved similar results as reference specimens. Furthermore, all specimens with ER matrix progressively collapsed. Finally, CS as a textile reinforcement of yarn matrix appears to be a suitable solution for increasing the temperature resistance of TRC structures and for substituting synthetic resins.

4.
Materials (Basel) ; 14(9)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922233

ABSTRACT

Textile-reinforced concrete (TRC) is a material consisting of high-performance concrete (HPC) and tensile reinforcement comprised of carbon roving with epoxy resin matrix. However, the problem of low epoxy resin resistance at higher temperatures persists. In this work, an alternative to the epoxy resin matrix, a non-combustible cement suspension (cement milk) which has proven stability at elevated temperatures, was evaluated. In the first part of the work, microscopic research was carried out to determine the distribution of particle sizes in the cement suspension. Subsequently, five series of plate samples differing in the type of cement and the method of textile reinforcement saturation were designed and prepared. Mechanical experiments (four-point bending tests) were carried out to verify the properties of each sample type. It was found that the highest efficiency of carbon roving saturation was achieved by using finer ground cement (CEM 52.5) and the pressure saturation method. Moreover, this solution also exhibited the best results in the four-point bending test. Finally, the use of CEM 52.5 in the cement matrix appears to be a feasible variant for TRC constructions that could overcome problems with its low temperature resistance.

5.
Materials (Basel) ; 13(23)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33272000

ABSTRACT

The use of recycled masonry aggregate for concrete is mostly limited by the worse properties in comparison with natural aggregate. For these reasons it is necessary to find ways to improve the quality of recycled masonry aggregate concrete and make it more durable. One possibility is utilization of crystalline admixture which was verified in this study by laboratory measurements of key material properties and durability. The positive influence of mineral admixture was proved for freeze-thaw resistance. The positive impact to carbonation resistance was not unambiguous. In conclusion, the laboratory evaluation shows how to improve the durability of recycled masonry aggregate concrete, however, it is necessary to investigate more about this topic.

SELECTION OF CITATIONS
SEARCH DETAIL
...