Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Top Spinal Cord Inj Rehabil ; 21(4): 313-24, 2015.
Article in English | MEDLINE | ID: mdl-26689696

ABSTRACT

BACKGROUND: Shoulder loading during manual wheelchair propulsion (WCP) contributes to the development of shoulder pain in individuals with spinal cord injury (SCI). OBJECTIVE: To use regression analysis to investigate the relationships between the hand contact angle (location of the hand on the pushrim at initial contact and release during the push phase of the WCP cycle) with propulsion characteristics, pushrim forces, and shoulder kinetics during WCP in individuals with paraplegia. METHODS: Biomechanical data were collected from 222 individuals (198 men and 24 women) with paraplegia from SCI during WCP on a stationary ergometer at a self-selected speed. The average age of participants was 34.7 years (±9.3), mean time since SCI was 9.3 years (±6.1), and average body weight was 74.4 kg (±15.9). The majority (n = 127; 56%) of participants had lower level paraplegia (T8 to L5) and 95 (42%) had high paraplegia (T2 to T7). RESULTS: Increased push arc (mean = 75.3°) was associated with greater velocity (R = 0.384, P < .001) and cycle distance (R = 0.658, P < .001) and reduced cadence (R = -0.419, P <.001). Initial contact angle and hand release angles were equally associated with cycle distance and cadence, whereas a more anterior release angle was associated with greater velocity (R = 0.372, P < .001). When controlling for body weight, a more posterior initial contact angle was associated with greater posterior shoulder net joint force (R = 0.229, P = .001) and greater flexor net joint moment (R = 0.204, P = .002), whereas a more anterior hand release angle was significantly associated with increased vertical (R = 0.270, P < .001) and greater lateral (R = .293, P < .001) pushrim forces; greater shoulder net joint forces in all 3 planes - posterior (R = 0.164, P = .015), superior (R = 0.176, P = .009), and medial (R = 0.284, P < .001); and greater external rotator (R = 0.176, P = .009) and adductor (R = 0.259, P = .001) net joint moments. CONCLUSIONS: Current clinical practice guidelines recommend using long, smooth strokes during manual WCP to reduce peak shoulder forces and to prevent shoulder pain development. The position of the hand at both initial contact and hand release must be considered in WCP training. It is recommended that participants should reach back to initiate contact with the pushrim to maximize push arc but avoid a more anterior hand position at release, because this could increase shoulder load during the push phase of WCP.


Subject(s)
Hand , Movement , Muscles/physiology , Paraplegia , Shoulder Pain/prevention & control , Shoulder , Wheelchairs , Adolescent , Adult , Biomechanical Phenomena , Ergometry , Female , Humans , Male , Middle Aged , Motor Skills , Paraplegia/etiology , Shoulder Joint , Shoulder Pain/etiology , Spinal Cord Injuries/complications , Young Adult
3.
J Spinal Cord Med ; 31(5): 568-77, 2008.
Article in English | MEDLINE | ID: mdl-19086715

ABSTRACT

BACKGROUND/OBJECTIVE: The high demand on the upper limbs during manual wheelchair (WC) use contributes to a high prevalence of shoulder pathology in people with spinal cord injury (SCI). Lever-activated (LEVER) WCs have been presented as a less demanding alternative mode of manual WC propulsion. The objective of this study was to evaluate the shoulder muscle electromyographic activity and propulsion characteristics in manual WC users with SCI propelling a standard pushrim (ST) and LEVER WC design. METHODS: Twenty men with complete injuries (ASIA A or B) and tetraplegia (C6, n = 5; C7, n = 7) or paraplegia (n = 8) secondary to SCI propelled ST and LEVER WCs at 3 propulsion conditions on a stationary ergometer: self-selected free, self-selected fast, and simulated graded resistance. Average velocity, cycle distance, and cadence; median and peak electromyographic intensity; and duration of electromyography of anterior deltoid, pectoralis major, supraspinatus, and infraspinatus muscles were compared between LEVER and ST WC propulsion. RESULTS: Significant decreases in pectoralis major and supraspinatus activity were recorded during LEVER compared with ST WC propulsion. However, anterior deltoid and infraspinatus intensities tended to increase during LEVER WC propulsion. Participants with tetraplegia had similar or greater anterior deltoid, pectoralis major, and infraspinatus activity for both ST and LEVER WC propulsion compared with the men with paraplegia. CONCLUSIONS: Use of the LEVER WC reduced and shifted the shoulder muscular demands in individuals with paraplegia and tetraplegia. Further studies are needed to determine the impact of LEVER WC propulsion on long-term shoulder function.


Subject(s)
Acceleration , Muscle, Skeletal/physiopathology , Shoulder/physiopathology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Wheelchairs , Adult , Electromyography/methods , Humans , Male , Middle Aged , Paraplegia/physiopathology , Paraplegia/rehabilitation , Quadriplegia/physiopathology , Quadriplegia/rehabilitation , Spinal Cord Injuries/rehabilitation
SELECTION OF CITATIONS
SEARCH DETAIL
...