Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(12): e9630, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36532138

ABSTRACT

Field-based transplant gardens, including common and reciprocal garden experiments, are a powerful tool for studying genetic variation and gene-by-environment interactions. These experiments assume that individuals within the garden represent independent replicates growing in a homogenous environment. Plant neighborhood interactions are pervasive across plant populations and could violate assumptions of transplant garden experiments. We demonstrate how spatially explicit models for plant-plant interactions can provide novel insights on genotypes' performance in field-transplant garden designs. We used individual-based models, based on data from a sagebrush (Artemisia spp.) common garden, to simulate the impact of spatial plant-plant interactions on between-group differences in plant growth. We found that planting densities within the range of those used in many common gardens can bias experimental outcomes. Our results demonstrate that higher planting densities can lead to inflated group differences and may confound genotypes' competitive ability and genetically underpinned variation. Synthesis. We propose that spatially explicit models can help avoid biased results by informing the design and analysis of field-based transplant garden experiments. Alternately, including neighborhood effects in post hoc analyses of transplant garden experiments is likely to provide novel insights into the roles of biotic factors and density dependence in genetic differentiation.


Los experimentos de trasplante de especies en parcelas de campo experimentales, tanto bajo condiciones ambientales comunes ("common gardens") como diferentes ("reciprocal gardens"), son una poderosa herramienta que permite estudiar la variación genética y la interacción entre el genoma y el medio ambiente. Dichos experimentos asumen que los individuos dentro de una misma parcela representan réplicas independientes creciendo bajo condiciones ambientales homogéneas. Las interacciones entre plantas vecinas están omnipresentes en las dinámicas poblaciones y pueden suponer una violación de dichas asunciones. Sin embargo, enfoques cuantitativos que permitan evaluar la adecuación del diseño experimental son escasos. Nosotros demostramos cómo los modelos espacialmente explícitos para las interacciones planta­planta pueden proporcionar nuevos hallazgos sobre el rendimiento genotípico en el diseño de experimentos de trasplante. Utilizamos modelos basados en individuos, junto con datos de "artemisa" (Artemisia spp.) procedentes de un "common garden," para simular el impacto de las interacciones planta­planta sobre las diferencias de crecimiento entre grupos. Encontramos que la densidad de siembra utilizada con frecuencia en muchos "common gardens" puede sesgar la estimación de la variación entre grupos. Nuestros resultados demuestran que una mayor densidad de siembra puede inflar las diferencias entre grupos, confundir la habilidad competitiva de los genomas y la variabilidad sustentada genéticamente, introduciendo así un sesgo en el experimento. Proponemos que los modelos espacialmente explícitos pueden ayudar a evitar el sesgo en los resultados mediante el apoyo en el diseño y análisis de experimentos de trasplante. Incluir efectos de vecindad en el análisis a posteriori de experimentos puede proporcionar nuevos hallazgos sobre el papel de los factores bióticos y densidad­dependientes en la diferenciación genética.

2.
PLoS One ; 15(12): e0232648, 2020.
Article in English | MEDLINE | ID: mdl-33378350

ABSTRACT

Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is one of the most harmful diseases in Mediterranean olive-growing areas. Although, the effects of both soil temperature and moisture on V. dahliae are well known, there is scant knowledge about what climatic drivers affect the occurrence of the pathogen on a large scale. Here, we investigate what climatic drivers determine V. dahliae occurrence in olive-growing areas in southern Spain. In order to bridge this gap in knowledge, a large-scale field survey was carried out to collect data on the occurrence of V. dahliae in 779 olive groves in Granada province. Forty models based on competing combinations of climatic variables were fitted and evaluated using information-theoretic methods. A model that included a multiplicative combination of seasonal and extreme climatic variables was found to be the most viable one. Isothermality and the seasonal distribution of precipitation were the most important variables influencing the occurrence of the pathogen. The isothermal effect was in turn modulated by the seasonality of rainfall, and this became less negative as seasonality increases. Thus, V. dahliae occurs more frequently in olive-growing areas where the day-night temperature oscillation is lower than the summer-winter one. We also found that irrigation reduced the influence of isothermality on occurrence. Our results demonstrate that long-term compound climatic factors rather than "primary" variables, such as annual trends, can better explain the spatial patterns of V. dahliae occurrence in Mediterranean, southern Spain. One important implication of our study is that appropriate irrigation management, when temperature oscillation approaches optimal conditions for V. dahliae to thrive, may reduce the appearance of symptoms in olive trees.


Subject(s)
Ascomycota , Climate , Olea/microbiology , Plant Diseases/microbiology , Plant Roots/microbiology , Seasons , Spain , Temperature
3.
Glob Chang Biol ; 25(11): 3844-3858, 2019 11.
Article in English | MEDLINE | ID: mdl-31180605

ABSTRACT

Species distribution models (SDMs) that rely on regional-scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local-scale anthropogenic variables, including wildfire history, land-use change, invasive species, and ecological restoration practices can override regional-scale variables to drive patterns of species distribution. Incorporating these human-induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentata Nutt.) as a model species to explore whether including human-induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field-sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America. Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: -6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: -47.9%, -41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions. As an increasing number of datasets representing land-use history become available, we anticipate that our modeling framework will have broad relevance across a range of biomes and species.


Subject(s)
Artemisia , Fires , Bayes Theorem , Climate Change , Ecosystem , North America
4.
PLoS One ; 12(3): e0172107, 2017.
Article in English | MEDLINE | ID: mdl-28257501

ABSTRACT

As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecology , Mustelidae/physiology , Animals , Climate Change , Ecosystem , Models, Theoretical , Population Dynamics , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...