Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 115(7): 1228-1243, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30843027

ABSTRACT

AIMS: Glycogen synthase kinase 3 beta (GSK3ß) link with the mitochondrial Permeability Transition Pore (mPTP) in cardioprotection is debated. We investigated the role of GSK3ß in ischaemia (I)/reperfusion (R) injury using pharmacological tools. METHODS AND RESULTS: Infarct size using the GSK3ß inhibitor BIO (6-bromoindirubin-3'-oxime) and several novel analogues (MLS2776-MLS2779) was determined in anaesthetized rabbits and mice. In myocardial tissue GSK3ß inhibition and the specificity of the compounds was tested. The mechanism of protection focused on autophagy-related proteins. GSK3ß localization was determined in subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) isolated from Langendorff-perfused murine hearts (30'I/10'R or normoxic conditions). Calcium retention capacity (CRC) was determined in mitochondria after administration of the inhibitors in mice and in vitro. The effects of the inhibitors on mitochondrial respiration, reactive oxygen species (ROS) formation, ATP production, or hydrolysis were measured in SSM at baseline. Cyclosporine A (CsA) was co-administered with the inhibitors to address putative additive cardioprotective effects. Rabbits and mice treated with MLS compounds had smaller infarct size compared with control. In rabbits, MLS2776 and MLS2778 possessed greater infarct-sparing effects than BIO. GSK3ß inhibition was confirmed at the 10th min and 2 h of reperfusion, while up-regulation of autophagy-related proteins was evident at late reperfusion. The mitochondrial amount of GSK3ß was similar in normoxic SSM and IFM and was not altered by I/R. The inhibitors did not affect CRC or respiration, ROS and ATP production/hydrolysis at baseline. The co-administration of CsA ensured that cardioprotection was CypD-independent. CONCLUSION: Pharmacological inhibition of GSK3ß attenuates infarct size beyond mPTP inhibition.


Subject(s)
Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Mitochondria, Heart/drug effects , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Autophagy-Related Proteins/metabolism , Peptidyl-Prolyl Isomerase F/genetics , Peptidyl-Prolyl Isomerase F/metabolism , Disease Models, Animal , Female , Glycogen Synthase Kinase 3 beta/metabolism , Isolated Heart Preparation , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/enzymology , Mitochondria, Heart/pathology , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Molecular Structure , Myocardial Infarction/enzymology , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Protein Kinase Inhibitors/chemistry , Rabbits , Signal Transduction , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...