Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 24(10): 4505-4520, 2018 10.
Article in English | MEDLINE | ID: mdl-29995346

ABSTRACT

Fire is a major factor controlling global carbon (C) and nitrogen (N) cycling. While direct C and N losses caused by combustion have been comparably well established, important knowledge gaps remain on postfire N losses. Here, we quantified both direct C and N combustion losses as well as postfire gaseous losses (N2 O, NO and N2 ) and N leaching after a high-intensity experimental fire in an old shrubland in central Spain. Combustion losses of C and N were 9.4 Mg C/ha and 129 kg N/ha, respectively, representing 66% and 58% of initial aboveground vegetation and litter stocks. Moreover, fire strongly increased soil mineral N concentrations by several magnitudes to a maximum of 44 kg N/ha 2 months after the fire, with N largely originating from dead soil microbes. Postfire soil emissions increased from 5.4 to 10.1 kg N ha-1  year-1 for N2 , from 1.1 to 1.9 kg N ha-1  year-1 for NO and from 0.05 to 0.2 kg N ha-1  year-1 for N2 O. Maximal leaching losses occurred 2 months after peak soil mineral N concentrations, but remained with 0.1 kg N ha-1  year-1 of minor importance for the postfire N mass balance. 15 N stable isotope labelling revealed that 33% of the mineral N produced by fire was incorporated in stable soil N pools, while the remainder was lost. Overall, our work reveals significant postfire N losses dominated by emissions of N2 that need to be considered when assessing fire effects on ecosystem N cycling and mass balance. We propose indirect N gas emissions factors for the first postfire year, equalling to 7.7% (N2 -N), 2.7% (NO-N) and 5.0% (N2 O-N) of the direct fire combustion losses of the respective N gas species.


Subject(s)
Fires , Nitrogen/analysis , Soil/chemistry , Ecosystem , Forests , Gases , Mediterranean Region , Minerals/analysis , Spain
2.
New Phytol ; 200(4): 1156-65, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24033081

ABSTRACT

As global changes reorganize plant communities, invasive plants may benefit. We hypothesized that elevated CO2 and warming would strongly influence invasive species success in a semi-arid grassland, as a result of both direct and water-mediated indirect effects. To test this hypothesis, we transplanted the invasive forb Linaria dalmatica into mixed-grass prairie treated with free-air CO2 enrichment and infrared warming, and followed survival, growth, and reproduction over 4 yr. We also measured leaf gas exchange and carbon isotopic composition in L. dalmatica and the dominant native C3 grass Pascopyrum smithii. CO2 enrichment increased L. dalmatica biomass 13-fold, seed production 32-fold, and clonal expansion seven-fold, while warming had little effect on L. dalmatica biomass or reproduction. Elevated CO2 decreased stomatal conductance in P. smithii, contributing to higher soil water, but not in L. dalmatica. Elevated CO2 also strongly increased L. dalmatica photosynthesis (87% versus 23% in P. smithii), as a result of both enhanced carbon supply and increased soil water. More broadly, rapid growth and less conservative water use may allow invasive species to take advantage of both carbon fertilization and water savings under elevated CO2 . Water-limited ecosystems may therefore be particularly vulnerable to invasion as CO2 increases.


Subject(s)
Carbon Dioxide/pharmacology , Carbon/pharmacology , Hot Temperature , Introduced Species , Linaria/physiology , Poaceae/physiology , Water/chemistry , Carbon Isotopes , Fertilizers , Linaria/anatomy & histology , Linaria/drug effects , Photosynthesis/drug effects , Plant Stomata/drug effects , Plant Stomata/physiology , Poaceae/drug effects , Soil/chemistry
3.
Int J Biometeorol ; 56(6): 1033-43, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22286321

ABSTRACT

Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.


Subject(s)
Climate , Droughts/statistics & numerical data , Fires/statistics & numerical data , Forests , Plant Development/physiology , Rain , Environmental Monitoring/statistics & numerical data , Mediterranean Islands , Spain
4.
Plant Cell Environ ; 35(3): 567-77, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21955347

ABSTRACT

Accurate estimates of the δ(13) C value of CO(2) respired from roots (δ(13) C(R_root) ) and leaves (δ(13) C(R_leaf) ) are important for tracing and understanding changes in C fluxes at the ecosystem scale. Yet the mechanisms underlying temporal variation in these isotopic signals are not fully resolved. We measured δ(13) C(R_leaf) , δ(13) C(R_root) , and the δ(13) C values and concentrations of glucose and sucrose in leaves and roots in the C(4) grass Sporobolus wrightii and the C(3) tree Prosopis velutina in a savanna ecosystem in southeastern Arizona, USA. Night-time variation in δ(13) C(R_leaf) of up to 4.6 ± 0.6‰ in S. wrightii and 3.0 ± 0.6‰ in P. velutina were correlated with shifts in leaf sucrose concentration, but not with changes in δ(13) C values of these respiratory substrates. Strong positive correlations between δ(13) C(R_root) and root glucose δ(13) C values in P. velutina suggest large diel changes in δ(13) C(R_root) (were up to 3.9‰) influenced by short-term changes in δ(13) C of leaf-derived phloem C. No diel variation in δ(13) C(R_root) was observed in S. wrightii. Our findings show that short-term changes in δ(13) C(R_leaf) and δ(13) C(R_root) were both related to substrate isotope composition and concentration. Changes in substrate limitation or demand for biosynthesis may largely control short-term variation in the δ(13) C of respired CO(2) in these species.


Subject(s)
Carbon Dioxide/analysis , Plant Leaves/chemistry , Plant Roots/chemistry , Poaceae/physiology , Prosopis/physiology , Arizona , Carbon Dioxide/chemistry , Carbon Isotopes/analysis , Carbon Isotopes/chemistry , Cell Respiration , Ecosystem , Glucose/analysis , Phloem/chemistry , Photoperiod , Seasons , Sucrose/analysis
5.
Oecologia ; 164(2): 297-310, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20454979

ABSTRACT

The C isotope composition of leaf dark-respired CO(2) (δ(13)C(l)) integrates short-term metabolic responses to environmental change and is potentially recorded in the isotopic signature of ecosystem-level respiration. Species differences in photosynthetic pathway, resource acquisition and allocation patterns, and associated isotopic fractionations at metabolic branch points can influence δ(13)C(l), and differences are likely to be modified by seasonal variation in drought intensity. We measured δ(13)C(l) in two deep-rooted C(3) trees (Prosopis velutina and Celtis reticulata), and two relatively shallow-rooted perennial herbs (a C(3) dicot Viguiera dentata and a C(4) grass Sporobolus wrightii) in a floodplain savanna ecosystem in southeastern Arizona, USA during the dry pre-monsoon and wet monsoon seasons. δ(13)C(l) decreased during the nighttime and reached minimum values at pre-dawn in all species. The magnitude of nocturnal shift in δ(13)C(l) differed among species and between pre-monsoon and monsoon seasons. During the pre-monsoon season, the magnitude of the nocturnal shift in δ(13)C(l) in the deep-rooted C(3) trees P. velutina (2.8 ± 0.4‰) and C. reticulata (2.9 ± 0.2‰) was greater than in the C(3) herb V. dentata (1.8 ± 0.4‰) and C(4) grass S. wrightii (2.2 ± 0.4‰). The nocturnal shift in δ(13)C(l) in V. dentata and S. wrightii increased to 3.2 ± 0.1‰ and 4.6 ± 0.6‰, respectively, during the monsoon season, but in C(3) trees did not change significantly from pre-monsoon values. Cumulative daytime net CO(2) uptake was positively correlated with the magnitude of the nocturnal decline in δ(13)C(l) across all species, suggesting that nocturnal δ(13)C(l) may be controlled by (13)C/(12)C fractionations associated with C substrate availability and C metabolite partitioning. Nocturnal patterns of δ(13)C(l) in dominant plant species in the semiarid savanna apparently have predictable responses to seasonal changes in water availability, which is important for interpreting and modeling the C isotope signature of ecosystem-respired CO(2).


Subject(s)
Asteraceae/metabolism , Carbon Dioxide/metabolism , Climate , Poaceae/metabolism , Prosopis/metabolism , Seasons , Ulmaceae/metabolism , Carbon Dioxide/chemistry , Carbon Isotopes , Circadian Rhythm , Citric Acid Cycle , Plant Leaves/metabolism , Species Specificity
6.
Biol Lett ; 6(3): 287-9, 2010 Jun 23.
Article in English | MEDLINE | ID: mdl-20015858

ABSTRACT

Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.


Subject(s)
Ecosystem , Isotopes , Carbon Dioxide , Ecology , Oxygen Isotopes , Plants/metabolism , Water
7.
Ecol Lett ; 12(6): 583-92, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19504722

ABSTRACT

The circadian clock (the endogenous mechanism that anticipates diurnal cycles) acts as a central coordinator of plant activity. At the molecular and organism level, it regulates key traits for plant fitness, including seed germination, gas exchange, growth and flowering, among others. In this article, we explore current evidence on the effect of the clock for the scales of interest to ecologists. We begin by synthesizing available knowledge on the effect of the clock on biosphere-atmosphere interactions and observe that, at least in the systems where it has been tested, the clock regulates gas exchange from the leaf to the ecosystem level, and we discuss its implications for estimates of the carbon balance. Then, we analyse whether incorporating the action of the clock may help in elucidating the effects of climate change on plant distributions. Circadian rhythms are involved in regulating the range of temperatures a species can survive and affects plant interactions. Finally, we review the involvement of the clock in key phenological events, such as flowering time and seed germination. Because the clock may act as a common mechanism affecting many of the diverse branches of ecology, our ultimate goal is to stimulate further research into this pressing, yet unexplored, topic.


Subject(s)
Biological Clocks , Circadian Rhythm , Plants/metabolism , Atmosphere , Ecosystem , Greenhouse Effect , Photosynthesis , Plant Development , Plant Leaves/metabolism , Time
8.
Plant Cell Environ ; 32(10): 1390-400, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19558412

ABSTRACT

We evaluated diurnal and seasonal patterns of carbon isotope composition of leaf dark-respired CO(2) (delta(13)C(l)) in the C(3) perennial shrub velvet mesquite (Prosopis velutina) across flood plain and upland savanna ecosystems in the south-western USA. delta(13)C(l) of darkened leaves increased to maximum values late during daytime periods and declined gradually over night-time periods to minimum values at pre-dawn. The magnitude of the diurnal shift in delta(13)C(l) was strongly influenced by seasonal and habitat-related differences in soil water availability and leaf surface vapour pressure deficit. delta(13)C(l) and the cumulative flux-weighted delta(13)C value of photosynthates were positively correlated, suggesting that progressive (13)C enrichment of the CO(2) evolved by darkened leaves during the daytime mainly resulted from short-term changes in photosynthetic (13)C discrimination and associated shifts in the delta(13)C signature of primary respiratory substrates. The (13)C enrichment of dark-respired CO(2) relative to photosynthates across habitats and seasons was 4 to 6 per thousand at the end of the daytime period (1800 h), but progressively declined to 0 per thousand by pre-dawn (0300 h). The origin of night-time and daytime variations in delta(13)C(l) is discussed in terms of the carbon source(s) feeding respiration and the drought-induced changes in carbon metabolism.


Subject(s)
Carbon Dioxide/chemistry , Carbon/chemistry , Plant Leaves/chemistry , Prosopis/chemistry , Seasons , Carbohydrates/analysis , Carbon Isotopes/chemistry , Darkness , Droughts , Photosynthesis , Soil , Starch/analysis , Water
9.
New Phytol ; 181(3): 672-82, 2009.
Article in English | MEDLINE | ID: mdl-19032443

ABSTRACT

The hypothesis that drought intensity constrains the recovery of photosynthesis from drought was tested in the C(3) woody legume Prosopis velutina, and the mechanisms underlying this constraint examined. Hydraulic status and gas exchange were measured the day before a 39 mm precipitation pulse, and up to 7 d afterwards. The experiment was conducted under rainout shelters, established on contrasting soil textures and with different vegetation cover at the Santa Rita Experimental Range in southeastern Arizona, USA. Rates of photosynthesis and stomatal conductance after re-watering, as well as the number of days necessary for photosynthesis to recover after re-watering, were negatively correlated with predawn water potential, a measure of drought intensity (R(2) = 0.83, 0.64 and 0.92, respectively). Photosynthetic recovery was incomplete when the vascular capacity for water transport had been severely impaired (percentage loss of hydraulic conductance > 80%) during the drought, which largely increased stomatal limitations. However, changes in biochemical capacity or in mesophyll conductance did not explain the observed pattern of photosynthesis recovery. Although the control that hydraulic limitations impose on photosynthesis recovery had been previously inferred, the first empirical test of this concept is reported here.


Subject(s)
Droughts , Fabaceae/physiology , Gases/metabolism , Plant Leaves/physiology , Prosopis/physiology , Rain , Water/physiology , Photosynthesis , Plant Stomata/physiology , Stress, Physiological , Time Factors , Wood , Xylem/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...