Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Stress ; 12: 100221, 2020 May.
Article in English | MEDLINE | ID: mdl-32435670

ABSTRACT

Psychosocial stress is the major form of stress faced by children and adolescents and is an important risk factor for the development of mental illnesses. Chronic social defeat stress (CSDS) is a preclinical mouse model that induces an entire spectrum of phenotypes with similar interindividual variability as seen in humans. Following CSDS, adult male mice have been characterized as being either susceptible or resilient to emotional stress on the basis of their social interactions, which was reported to be highly correlated with sucrose preference (SP) when measured after the last defeat episode. We studied adolescent male C57BL/6 mice (30 days old) for susceptibility and resilience to social avoidance, anhedonia and anxiety-like behaviors, body weight change and basal blood corticosterone concentrations after 10 days of CSDS. Defeated adolescents showed reduced SP, reduced social interaction time (with an unknown adolescent male from their same strain), reduced weight gain and higher basal blood corticosterone concentration when compared to nondefeated mice. Only a small proportion of defeated adolescents were either totally susceptible (20%) or totally resilient (30%) in both the SP and social avoidance tests. The remaining defeated mice had a distinct behavioral impairment - susceptible in one test and resilient in the other. Surprisingly, behaviorally resilient defeated adolescents were the most affected population in terms of both endocrine/physiological outcomes. These findings illustrate that, contrary to prior assumptions in adults, the CSDS responses are more complex and singular in adolescents, and caution should be taken for the correct interpretation of those phenotypes. We propose a better characterization of social defeat stress responses as a critical step to advance our understanding of the mechanisms behind stress resilience that translate to human experience.

2.
J Appl Anim Welf Sci ; 17(1): 73-81, 2014.
Article in English | MEDLINE | ID: mdl-24484312

ABSTRACT

Researchers have reported on the diet of Leopardus tigrinus and ecological aspects, but studies of behavior are scarce. The aims of this study were to describe the time budget and activity patterns of 10 captive Leopardus tigrinus individuals. The group had an activity budget of 66% resting, 20.66% moving, 6.08% vigilant, 3.12% feeding, and 4.14% other activities during 720 hr of observations. The activity budgets of the males and females did not differ significantly; however, males ate more than did females. The nonhuman animals spent more time resting during the day than during the night. Moving, socializing, maintenance, and vigilance showed statistically higher mean values at night. Group analysis of the temporal pattern of behavior showed bimodal peaks. Activity levels were high from 5 a.m. to 6 a.m. and decreased through the day only to peak again at 7 p.m. Stereotypic pacing peaked at dawn and at dusk. Patterns of vigilance, feeding, and maintenance were also determined for the group during a 24-hr period. These results may be useful for the development of management plans and effective conservation strategies for captive cats.


Subject(s)
Animals, Zoo/psychology , Felidae/psychology , Animals , Behavior, Animal , Female , Male , Sex Factors , Time Factors
3.
Behav Brain Res ; 211(1): 33-40, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20211656

ABSTRACT

Maternal thiamine deficiency causes changes in cellular energy metabolism that can interfere with offspring brain development. The purpose of the present study was to investigate the effects of thiamine restriction, during lactation, on offspring neurochemistry and cognitive parameters. Male young (31 days old) and adult (75 days old) rats, from control and restricted mothers, were submitted to spatial learning and memory assessment. GABAergic and glutamatergic parameters were measured in thalamus, prefrontal cortex and hippocampus by high performance liquid chromatography (HPLC). The young animals were assessed immediately after thiamine restricted period; the adults, however, underwent a recovery period of 45 days. In young rats, thiamine restriction significantly hindered body weight gain and learning speed; however, it did not affect the brain weight, GABA and glutamate parameters in any of the brain assessed areas. In adult rats the body weight gain was significantly hampered by thiamine restriction, while brain weight and spatial task were not affected. Also, in adult offspring, maternal thiamine restriction significantly decreased the glutamate and GABA contents in the three assessed brain areas and thalamus, respectively. One possible explanation for these findings is that an adjustment of the inhibitory (GABAergic) and stimulatory (glutamatergic) neuromodulation systems occurs, in order to reverse the behavioral deficits detected in young rats but not in adult ones. The present data show, for the first time, that maternal thiamine restriction during lactation induces cognitive impairments and neurochemical changes in offspring, corroborating the important role of thiamine in brain development.


Subject(s)
Animals, Suckling/growth & development , Brain/growth & development , Cognition Disorders/etiology , Lactation/metabolism , Thiamine Deficiency/complications , Thiamine/metabolism , Analysis of Variance , Animals , Animals, Suckling/metabolism , Brain/metabolism , Cognition Disorders/metabolism , Energy Metabolism , Female , Glutamic Acid/metabolism , Hippocampus/growth & development , Hippocampus/metabolism , Male , Maze Learning/physiology , Milk/chemistry , Milk/metabolism , Nutritive Value , Prefrontal Cortex/growth & development , Prefrontal Cortex/metabolism , Rats , Reaction Time/physiology , Thalamus/growth & development , Thalamus/metabolism , Thiamine/analysis , Thiamine Deficiency/etiology , Time Factors , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...