Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hear Res ; 237(1-2): 57-65, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18243607

ABSTRACT

Genes involved in the hearing process have been identified through both positional cloning efforts following genetic linkage studies of families with heritable deafness and by candidate gene approaches based on known functional properties or inner ear expression. The latter method of gene discovery may employ a tissue- or organ-specific approach. Through characterization of a human fetal cochlear cDNA library, we have identified transcripts that are preferentially and/or highly expressed in the cochlea. High expression in the cochlea may be suggestive of a fundamental role for a transcript in the auditory system. Herein we report the identification and characterization of a transcript from the cochlear cDNA library with abundant cochlear expression and unknown function that was subsequently determined to represent osteoglycin (OGN). Ogn-deficient mice, when analyzed by auditory brainstem response and distortion product otoacoustic emissions, have normal hearing thresholds.


Subject(s)
Cochlea/physiology , Hearing Loss/physiopathology , Hearing/physiology , Intercellular Signaling Peptides and Proteins/genetics , Animals , Auditory Threshold , Evoked Potentials, Auditory, Brain Stem , Gene Expression , Gene Library , Hearing Loss/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Mutant Strains , Oligonucleotide Array Sequence Analysis , Otoacoustic Emissions, Spontaneous , Phenotype
2.
J Assoc Res Otolaryngol ; 7(2): 160-72, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16718610

ABSTRACT

EST N66408 represents one of several large unique clusters expressed in the Morton human fetal cochlear cDNA library. N66408 is 575 bp in size and initial BLAST analysis of this sequence showed no homology to any known genes or expressed sequence tags (ESTs) from other organs or tissues. Sequence of the original cochlear clone from which N66408 was derived revealed that the corresponding cDNA was about 700 bp in size, including 125 bp at its 5' end with homology to the 3' end of COL9A1 in addition to 575 bp of novel sequence. RT-PCR analysis using primers specific to COL9A1 isoforms 1 and 2 detected expression of both isoforms in human fetal cochlea. Tissue in situ hybridization using the novel 3' UTR sequence as probe showed abundant expression in spiral limbus and spiral ligament, and a moderate level of expression in the organ of Corti. dbEST analysis of ESTs specific to the 3' UTR of COL9A1 showed 19 ESTs derived from various tissues; three polyadenylation sites were identified and the majority of these ESTs were derived from overlapping polyadenylation signals at the second site (position 749-758). Comparison of the 3' UTR of human COL9A1 with its orthologs as well as with dbEST uncovered a highly conserved region around the overlapping polyadenylation signals at position 749-758 in mammals. A search of the microRNA database revealed a highly conserved target sequence for miR-9 immediately preceding the overlapping polyadenylation signals in the novel 3' UTR of COL9A1, suggesting its role in posttranscriptional regulation of COL9A1.


Subject(s)
3' Untranslated Regions/chemistry , Cochlea/metabolism , Collagen Type IX/metabolism , Base Sequence , Blotting, Northern , Collagen Type IX/genetics , Deafness/genetics , Expressed Sequence Tags , Fetus/metabolism , Humans , In Situ Hybridization , MicroRNAs , Molecular Sequence Data , RNA 3' Polyadenylation Signals , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment
3.
J Assoc Res Otolaryngol ; 5(2): 185-202, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15357420

ABSTRACT

We have cloned a novel human gene, designated PFET1 (predominantly fetal expressed T1 domain) (HUGO-approved symbol KCTD12 or C13orf2), by subtractive hybridization and differential screening of human fetal cochlear cDNA clones. Also, we have identified the mouse homolog, designated Pfet1. PFET1/Pfet1 encode a single transcript of approximately 6 kb in human, and three transcripts of approximately 4, 4.5, and 6 kb in mouse with a 70% GC-rich open reading frame (ORF) consisting of 978 bp in human and 984 bp in mouse. Both genes have unusually long 3' untranslated (3' UTR) regions (4996 bp in human PFET1, 3700 bp in mouse Pfet1) containing 12 and 5 putative polyadenylation consensus sequences, respectively. Pfetin, the protein encoded by PFET1/Pfet1, is predicted to have 325 amino acids in human and 327 amino acids in mouse and to contain a voltage-gated potassium (K+) channel tetramerization (T1) domain. Otherwise, to date these genes have no significant homology to any known gene. PFET1 maps to the long arm of human chromosome 13, in band q21 as shown by FISH analysis and STS mapping. Pfet1 maps to mouse chromosome 14 near the markers D14Mit8, D14Mit93, and D14Mit145.1. The human 6 kb transcript is present in a variety of fetal organs, with highest expression levels in the cochlea and brain and, in stark contrast, is detected only at extremely low levels in adult organs, such as brain and lung. Immunohistochemistry with a polyclonal antibody raised against a synthetic peptide to PFET1 sequence (pfetin) reveals immunostaining in a variety of cell types in human, monkey, mouse, and guinea pig cochleas and the vestibular system, including type I vestibular hair cells.


Subject(s)
Cochlea/embryology , Cochlea/physiology , Gene Expression Regulation, Developmental , Introns/genetics , Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Blotting, Northern , Chromosome Mapping , Chromosomes, Human, Pair 13 , Gene Library , Genetic Testing , Humans , Immunohistochemistry , Mice , Molecular Sequence Data , Proteins/metabolism , Receptors, GABA
4.
J Assoc Res Otolaryngol ; 3(1): 45-53, 2002 Mar.
Article in English | MEDLINE | ID: mdl-12083723

ABSTRACT

To identify genes involved in hearing, 8494 expressed sequence tags (ESTs) were generated from a human fetal cochlear cDNA library in two distinct sequencing projects. Analysis of the first set of 4304 ESTs revealed clones representing 517 known human genes, 41 mammalian genes not previously detected in human tissues, 487 ESTs from other human tissues, and 541 cochlear-specific ESTs (http://hearing.bwh.harvard.edu). We now report results of a DNA sequence similarity (BLAST) analysis of an additional 4190 cochlear ESTs and a comparison to the first set. Among the 4190 new cochlear ESTs, 959 known human genes were identified; 594 were found only among the new ESTs and 365 were found among ESTs from both sequencing projects. COL1A2 was the most abundant transcript among both sets of ESTs, followed in order by COL3A1, SPARC, EEFY1A1, and TPTI. An additional 22 human homologs of known nonhuman mammalian genes and 1595 clusters of ESTs, of which 333 are cochlear-specific, were identified among the new cochlear ESTs. Map positions were determined for 373 of the new cochlear ESTs and revealed 318 additional loci. Forty-nine of the mapped ESTs are located within the genetic interval of 23 deafness loci. Reanalysis of unassigned ESTs from the prior study revealed 338 additional known human genes. The total number of known human genes identified from 8494 cochlear ESTs is 1449 and is represented by 4040 ESTs. Among the known human genes are 14 deafness-associated genes, including GJB2 (connexin 26) and KVLQT1. The total number of nonhuman mammalian genes identified is 43 and is represented by 58 ESTs. The total number of ESTs without sequence similarity to known genes is 4055. Of these, 778 also do not have sequence similarity to any other ESTs, are categorized into 700 clusters, and may represent genes uniquely or preferentially expressed in the cochlea. Identification of additional known genes, ESTs, and cochlear-specific ESTs provides new candidate genes for both syndromic and nonsyndromic deafness disorders.


Subject(s)
Auditory Pathways/physiology , Cochlea/physiology , Gene Expression , Genes , Chromosome Mapping , Connexin 26 , Connexins , Databases, Factual , Deafness/genetics , Fetus , Gene Library , Humans , Sequence Tagged Sites
SELECTION OF CITATIONS
SEARCH DETAIL
...